• Title/Summary/Keyword: Climatic chamber test

Search Result 14, Processing Time 0.024 seconds

Thermal and subjective responses by sun hats for farmer in a hot climatic chamber (서열 환경에서 농작업 모자 착용에 따른 체온 조절 및 주관적 반응)

  • 김명주;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.5
    • /
    • pp.713-722
    • /
    • 2004
  • This study examined the effects of two kinds of functional sun hats through a head-manikin test and a climatic chamber trial for farm workers in summer. Experiment was composed of four conditions. The first condition was the condition without any hat (Control). The second was the condition with a sun hat on the market (Hat A). The third was the condition with a functional sun hat made of reflective fabric (Hat B). The last was the condition with a functional sun hat having a ventilating structure as well as reflective fabric (Hat C). For the subjects in the climatic chamber trials, 12 healthy males volunteered. Air temperature, relative humidity and globe temperature in the chamber was maintained at $33{\pm}0.5^{\circ}C,\;65{\pm}5%RH\;and\;39{\pm}1^{\circ}C\;(WBGT\;33^{\circ}C)$. Subjects did a simulated red pepper-work (50-min work and 10-min rest, twice repetition) for 120 min. As the result of head-manikin test, the surface temperature on middle of back-neck was the lowest in Hat B of four conditions and the surface temperature on top of head was the lowest in Hat C. As the result of climatic chamber trials, there were apparent differences between with (Hat A, Hat B, Hat C) and without a sun hat (Control). In rectal temperature ($T_{re}$), mean skin temperature ($\={T}_{sk}$), heart rate (HR), total sweat rate (TSR), The physiological heat strain was less in the condition with hats than in the condition without a sun hat. As the increasing rate in Tre, Hat B is the most effective hat for alleviation heat strain. As the subjective responses, Hat B was the most effective hat for thermal comfort even though the difference was not significant. Hat C was less effective than Hat B and the reason might be the increase of weight due to inserting the ventilating structure.

Effects of a Four-week Clothing Program for Improving Vascular Compliance on Heat Tolerance (혈압 관리를 위한 4주간의 착의훈련이 고혈압 전단계자의 내열성에 미치는 영향)

  • Choi, Jeong-Wha;Park, Joon-Hee
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.3
    • /
    • pp.445-454
    • /
    • 2011
  • This study was performed on 5 prehypertensive male participants to investigate the effects of the clothing program for improving the vascular compliance on heat tolerance. The clothing program means the alternate stimulation of the temperature using clothes. The participants wore two different garments with $1.5^{\circ}C$ difference in the temperature inside clothing in a climatic chamber ($18.8{\pm}0.2^{\circ}C$, $38{\pm}3%RH$) alternately for 4 weeks. Heat tolerance tests were conducted in the climatic chamber of $35.2{\pm}0.5^{\circ}C$, $54{\pm}3%RH$ before and after the clothing program. The results were as follows. The $\overline{T}$sk, Tr and heart rate were lower in the post test than in the pre test (p<.01). The whole body and local sweat rates as well as systolic and diastolic blood pressures had reduced the tendencies in the post test. Participants felt less wet and more comfortable in the post test than in the pre test(p<.01). These results showed that the clothing program through the alternate stimulation of the temperature positively affected the improvement of heat tolerance.

Efficacy of Cooling Vests for Alleviating Heat Strain of Farm Workers in Summer (여름철 농민의 서열 부담 경감을 위한 냉각조끼의 성능 평가)

  • Choi Jeong-Wha;Kim Myung-Ju;Lee Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.8 s.145
    • /
    • pp.1176-1187
    • /
    • 2005
  • The purpose of this study was to evaluate the efficiency of cooling vests developed for farm workers harvesting red pepper in summer. The study was performed using the following two steps: 1) Climatic chamber test, 2) Field test. For the chamber test, a work environment was simulated as $33^{\circ}C$ and $65\%$RH, and the thermo-physiological and subjective responses were measured with and without cooling vests. Twelve young males participated as subjects. For the field test, three farmers participated while harvesting red pepper on the form, in summer. The measurements used were same as in the chamber test. Subjects were tested without any cooling vests, as a control. They were tested wearing vests with 2 frozen gel packs (CV2: Cooling area, $308cm^2$), and vests with 4 frozen gel packs (CV4: Sooting area, $616cm^2$). As a result of the chamber test, rectal temperature($T_{re}$) and mean skin temperature( $T_{sk}$) were lower in both CVs than in Control, and this tendency was statistically significant in CV4 (p<.05). Clothing microclimate temperature ($T_{clo}$) and total sweat rate (TSR) were significantly lower when wearing cooling vests (p<.05) Heart rate (HR) was also lower in wearing cooling vests than in Control, and the speed of recovery to the comfort level was faster when the subjects wore cooling vests. In addition, subjects felt 'less hot, less humid, and less uncomfortable' in both CVs than in Control. Field tests showed a similar tendency with the chamber tests. In particular, wearing the cooling vest was effective in restraining the raise of $T_{clo}$ on the back. It can be concluded that the cooling vest was effective in alleviating heat strain and discomfort in both the chamber test and the field test, despite the cooling area of the cooling vest being just $3.4\%$ of the body surface area ($616cm^2$).

Ground High/Low Temperature Test for FA-50 Aircraft (FA-50 경공격기 전기체 지상 고/저온시험)

  • Ahn, Jong Hoon;Kim, Tae Ho;Woo, Seung Cheol;Cho, Young Kyun;Kim, Do Wan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The ground high/low temperature test objective is to check the normal ground operation of FA-50 aircraft in the extreme ground ambient conditions. The aircraft was exposed in climatic conditions of the basic climatic category according to the MIL-HDBK-310. For verified normal operation in the extreme high temperature, the high temperature test was performed in the hot regional type conditions and accentuated solar radiation heat. This test was performed at the test chamber in ADD where is in Haemi. This paper was described about the test procedure of FA-50 high/low temperature including preparation, testing and results.

  • PDF

Assessment of the Effects of Interactions between Climatic Conditions and Genetic Characteristics on the Agronomic Traits of Soybeans Grown in Six Different Experimental Fields

  • Park, Myoung Ryoul;Cai, Chunmei;Seo, Min-Jung;Yun, Hong-Tae;Park, Soo-Kwon;Choi, Man-Soo;Park, Chang-Hwan;Moon, Jung Kyung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.246-268
    • /
    • 2019
  • Soybean [Glycine max (L.) Merr.] is a species of legume native to East Asia. The interactions between climatic conditions and genetic characteristics are known to affect the agricultural performance of soybean. Therefore, the present investigation was conducted to identify the main elements affecting the agricultural performances of 11 soybean varieties/lines from China [Harbin ($45^{\circ}12^{\prime}N$), Yanji ($42^{\circ}53^{\prime}N$), Dalian ($39^{\circ}30^{\prime}N$), Qingdao ($36^{\circ}26^{\prime}N$)] and the Republic of Korea [Suwon ($37^{\circ}16^{\prime}N$), and Jeonju ($35^{\circ}49^{\prime}N$)]. The days to flowering (DTF) of soybeans with the e1-nf and e1-as alleles and the E1e2e3e4 genotype, except in 'Keumgangkong', 'Tawonkong', and 'Duyoukong', were relatively short compared to those of soybeans with other alleles. Although DTF of the soybeans was highly correlated with all climatic conditions [negative: precipitation, average temperature (AVT), accumulated temperature; positive: day-length (DL)], days to maturity and 100-seed weight of the soybeans showed no significant correlation with any climatic conditions. The soybeans with a dominant Dt1 allele, except 'Tawonkong', had the longest stem length (STL). Moreover, STL of the soybeans grown in the test fields showed a positive correlation with only DL; however, the results of our chamber test that was conducted to complement the field tests showed that STL of soybean was positively affected by AVT and DL. Although soybean yield (YLD) showed positive correlations with latitude and DL (except L62-667, OT89-5, and OT89-6), the response of YLD to the climatic conditions was cultivar-specific. Our results show that DTF and STL of soybeans grown in six different latitudes are highly affected by DL, and AVT and genetic characteristic also affect DTF and STL.

Study on the Temperature Distribution of Cabin under Various Car Heating Modes (난방기 출력에 따른 철도차량 객실 내부 온도 분포 분석)

  • Cho, Youngmin;Yoon, Young-Kwan;Park, Duck-Shin;Kim, Tae-Wook;Kwon, Soon-Bark;Jung, Woo-Sung;Kim, Hee-Man
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.558-565
    • /
    • 2012
  • Abnormal climate or weather is more frequently reported nowadays due to the global climate change. Especially, extremely low temperature in winter season may cause bad thermal discomfort of passengers. In this study, the effect of car heating modes on cabin temperature change and distribution was studied by using a real-scale environmental chamber for passenger cabin. It was found that the cabin temperature rose quickly at the initial stage of heating system operation, but it stopped increasing after certain point. And, temperature was higher when the height from the floor was higher. Based on the obtained result, the way to minimize the decrease of passengers' thermal comfort was suggested.

Physiological Responses and Subjective Sensations of Human Wearing Soccer Wear of Different Materials and Designs (축구복 소재와 디자인이 인체생리반응과 주관적 감각에 미치는 영향)

  • Choi Jeong-Wha;Kim So-Young;Jeon Tae-Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.1 s.139
    • /
    • pp.35-45
    • /
    • 2005
  • The purpose of this study was to evaluate thermal properties of soccer wear with different materials and designs. As a beginning step, the questionnaire survey about the actual condition of soccer wears was conducted. with the results of the questinnaire, two soccer wears with new material and design that were improved in tactile sensations, absorption and ventilation were developed. We evaluated thermal and subjective responses of subjects wearing Korea national soccer team uniform in 1998 World Cup (Uniform 98), soccer wear with new material and same design(New II) and with new material and new design(New I). New I was made with mesh in armhole for improving ventilation. Rectal temperature, skin temperature, clothing microclimate, and heart rate were measured in climatic chamber test(twelve times) and field test(eighteen times). The results were as follows. 1. As the results of the climatic chamber test, rectal temperature was lower in New I and New II than Uniform98, and mean skin temperature was lower in New I than Uniform 98 and New II. Heart rate was lower in New I than New II, and total body weight loss and local sweating were not significantly different by soccer wears. 2. As the results of the field test, rectal temperature was lower in New I than Uniform98 and New II. Mean skin temperature was lower in New II than Uniform98 and New I. Clothing microclimate temperature was lower in New II than Uniform98 and New 1, and clothing microclimate humidity was lower in New I, New II than Uniform 98. Heart rate was lower in New I than Uniform 98, New II and total body weight loss and local sweating were lower in New I, New II than Uniform 98. In conclusion, New I using new design using mesh in armhole and new material using sweat absorbent finishing was excellent from the point of view of physical responses, ventilation and sweat absorption.

Effect of menstrual cycle on wearing behavior for thermal comfort (생리주기가 열쾌적성을 위한 착의행동에 미치는 영향)

  • 정운선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.2
    • /
    • pp.287-292
    • /
    • 2001
  • This study was conducted to investigate preferred clothing selected by females for thermal comfort in follicular phase (FP) and luteal phase (LP) of the menstrual cycle. Eight healthy college students volunteered as subjects. They stayed for 60 minutes at $25^{\circ}C$, 55%RH (stage 1) for baseline followed by a 60 minute stay at 2$0^{\circ}C$, 55%RH (stage 2) in a climatic chamber. Obtained results were analyzed using paired t-test and repeated measures of ANOVA. Arm and hand skin temperatures were maintained higher in FP than in LP, while mean skin temperature did not show any significant difference between FP and LP. The subjects selected additional clothing faster in FP than in LP. Six of the subjects wore heavier clothing in FP than in LP, while two of them wore heavier in LP than in FP.

  • PDF

Study on Optimal Design and Performance Test of Chilled Beam Unit (칠드빔 유니트의 최적설계 및 성능평가 연구)

  • Kim, Jung-Yup;Shin, Hyun-Jun;Joo, Sang-Hyun;Kim, Ji-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2014
  • Chilled Beam system is the kind of water-air system which reduces the conveyance energy for air conditioning as well as allows efficient installation and comfortable indoor environment, and has been increasingly popular mainly in Europe. To effectively install such Chilled Beam system domestically, it is necessary to develop the product considering domestic climatic condition and the requirements for air conditioning system, and particularly the way to deal with condensation during operation of cooling system in summer shall be provided. In this study, the optimal design on induction structure of Chilled Beam unit was carried out through a numerical method, and the performance test for the prototype of unit was conducted in a real-scale experiment facilities of Chilled Beam unit. While the flowrate of 1st air is 101.3 CMH, the pressure in pressure chamber is 158.7 Pa and the cooling capacities of 1st air side and 2nd air side are 498.1 W and 709.5 W respectively.

Study of the Effects of Ambient Temperature and Car Heater Power on the Train Cabin Temperature (외기 온도와 난방 출력의 철도차량 객실 온도에 대한 영향 연구)

  • Cho, Youngmin;Park, Duck-Shin;Kwon, Soon-Bark;Jung, Woo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5877-5884
    • /
    • 2014
  • Recently, abnormally cold weather has been reported more frequently in winter due to the climate change and abnormal weather changes. On the other hand, the heating capacity of a railcar may be not enough to warm the cabin under severe cold climatic conditions, which is one of the reasons for the passengers' complaints about heating. In this study, the effects of ambient temperature and heater power on the cabin temperature was investigated to obtain the minimum ambient temperature for the tested railcar. The test railcar was placed in a large-climatic chamber, and various ambient temperature conditions were simulated. The effects of the heater output were investigated by monitoring the cabin temperature under a range of heater output conditions. The mean cabin temperature was $14.0^{\circ}C$, which was far lower than the required minimum temperature of $18^{\circ}C$, under a $-10^{\circ}C$ ambient temperature condition with the maximum heat power. When the ambient temperature was set to $0^{\circ}C$ and $10^{\circ}C$, the maximum achievable cabin temperature was $26.1^{\circ}C$ and $34.0^{\circ}C$. Through calculations using the interpolation method, the minimum ambient temperature to maintain an $18^{\circ}C$ cabin temperature was $-6.7^{\circ}C$ for this car. The vertical temperature difference was higher with a higher power output and higher ambient temperature. The maximum vertical temperature difference was higher than $10^{\circ}C$ in some cases. However, the horizontal temperature difference vs. low temperature (< $2^{\circ}C$) was independent of the power output and ambient temperature. As a result, it is very important to reduce the vertical temperature difference to achieve good heating performance.