• Title/Summary/Keyword: Clock Grid

Search Result 7, Processing Time 0.019 seconds

Analysis and Modeling of Clock Grid Network Using S-parameter (S-파라미터를 사용한 클락 그리드 네트워크의 분석과 모델링)

  • Kim, Kyung-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.37-42
    • /
    • 2007
  • Clock grid networks are now common in most high performance microprocessors. This paper presents a new effective modeling and simulation methodology for the clock grid using scattering parameter. It also shows the effect of wire width and grid size on the clock skew of the grid. The interconnection of the clock grid is modeled by RC passive elements. The results show that the error is within 10 % comparing to Hspice simulation results.

Energy-efficient Scheduling of Periodic Real-time Tasks on Heterogeneous Grid Computing Systems

  • Lee, Wan Yeon;Choi, Yun-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.78-86
    • /
    • 2017
  • In this paper, we propose an energy-efficient scheduling scheme for real-time periodic tasks on a heterogeneous Grid computing system. The Grid system consists of heterogeneous processors providing the DVFS mechanism with a finite set of discrete clock frequencies. In order to save energy consumption, the proposed scheduling scheme assigns each real-time task to a processor with the least energy increment. Also the scheme activates a part of all available processors with unused processors powered off. Evaluation shows that the proposed scheme saves up to 70% energy consumption of the previous method.

Design and Evaluation of PMU Performance Measurement and GPS Monitoring System for Power Grid Stabilization

  • Yang, Sung-Hoon;Lee, Chang Bok;Lee, Young Kyu;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • Power grid techniques are distributed over general power systems ranging from power stations to power transmission, power distribution, and users. To monitor and control the elements and performance of a power system in real time in the extensive area of power generation, power transmission, wide-area monitoring (WAM) and control techniques are required (Sattinger et al. 2007). Also, to efficiently operate a power grid, integrated techniques of information and communication technology are required for the application of communication network and relevant equipment, computing, and system control software. WAM should make a precise power grid measurement of more than once per cycle by time synchronization using GPS. By collecting the measurement values of a power grid from substations located at faraway regions through remote communication, the current status of the entire power grid system can be examined. However, for GPS that is used in general national industries, unexpected dangerous situations have occurred due to its deterioration and jamming. Currently, the power grid is based on a synchronization system using GPS. Thus, interruption of the time synchronization system of the power system due to the failure or abnormal condition of GPS would have enormous effects on each field such as economy, security, and the lives of the public due to the destruction of the synchronization system of the national power grid. Developed countries have an emergency substitute system in preparation for this abnormal situation of GPS. Therefore, in Korea, a system that is used to prepare for the interruption of GPS reception should also be established on a long-term basis; but prior to this, it is required that an evaluation technique for the time synchronization performance of a GPS receiver using an atomic clock within the power grid. In this study, a monitoring system of time synchronization based on GPS at a power grid was implemented, and the results were presented.

A synchronous/asynchronous hybrid parallel method for some eigenvalue problems on distributed systems

  • 박필성
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.11-11
    • /
    • 2003
  • 오늘날 단일 슈퍼컴퓨터로는 처리가 불가능한 거대한 문제들의 해법이 시도되고 있는데, 이들은 지리적으로 분산된 슈퍼컴퓨터, 데이터베이스, 과학장비 및 디스플레이 장치 등을 초고속 통신망으로 연결한 GRID 환경에서 효과적으로 실행시킬 수 있다. GRID는 1990년대 중반 과학 및 공학용 분산 컴퓨팅의 연구 과정에서 등장한 것으로, 점차 응용분야가 넓어지고 있다. 그러나 GRID 같은 분산 환경은 기존의 단일 병렬 시스템과는 많은 점에서 다르며 이전의 기술들을 그대로 적용하기에는 무리가 있다. 기존 병렬 시스템에서는 주로 동기 알고리즘(synchronous algorithm)이 사용되는데, 직렬 연산과 같은 결과를 얻기 위해 동기화(synchronization)가 필요하며, 부하 균형이 필수적이다. 그러나 부하 균형은 이질 클러스터(heterogeneous cluster)처럼 프로세서들의 성능이 서로 다르거나, 지리적으로 분산된 계산자원을 사용하는 GRID 환경에서는 이기종의 문제뿐 아니라 네트워크를 통한 메시지의 전송 지연 등으로 유휴시간이 길어질 수밖에 없다. 이처럼 동기화의 필요성에 의한 연산의 지연을 해결하는 하나의 방안으로 비동기 반복법(asynchronous iteration)이 나왔으며, 지금도 활발히 연구되고 있다. 이는 알고리즘의 동기점을 가능한 한 제거함으로써 빠른 프로세서의 유휴 시간을 줄이는 것이 목적이다. 즉 비동기 알고리즘에서는, 각 프로세서는 다른 프로세서로부터 갱신된 데이터가 올 때까지 기다리지 않고 계속 다음 작업을 수행해 나간다. 따라서 동시에 갱신된 데이터를 교환한 후 다음 단계로 진행하는 동기 알고리즘에 비해, 미처 갱신되지 않은 데이터를 사용하는 경우가 많으므로 전체적으로는 연산량 대비의 수렴 속도는 느릴 수 있다 그러나 각 프로세서는 거의 유휴 시간이 없이 연산을 수행하므로 wall clock time은 동기 알고리즘보다 적게 걸리며, 때로는 50%까지 빠른 결과도 보고되고 있다 그러나 현재까지의 연구는 모두 어떤 수렴조건을 만족하는 선형 시스템의 해법에 국한되어 있으며 비교적 구현하기 쉬운 공유 메모리 시스템에서의 연구만 보고되어 있다. 본 연구에서는 행렬의 주요 고유쌍을 구하는 데 있어 비동기 반복법의 적용 가능성을 타진하기 위해 우선 이론적으로 단순한 멱승법을 사용하여 실험하였고 그 결과 순수한 비동기 반복법은 수렴하기 어렵다는 결론을 얻었다 그리하여 동기 알고리즘에 비동기적 요소를 추가한 혼합 병렬 알고리즘을 제안하고, MPI(Message Passing Interface)를 사용하여 수원대학교의 Hydra cluster에서 구현하였다. 그 결과 특정 노드의 성능이 다른 것에 비해 현저하게 떨어질 때 전체적인 알고리즘의 수렴 속도가 떨어지는 것을 상당히 완화할 수 있음이 밝혀졌다.

  • PDF

On-chip Decoupling Capacitor for Power Integrity (전력 무결성을 위한 온 칩 디커플링 커패시터)

  • Cho, Seungbum;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • As the performance and density of IC devices increase, especially the clock frequency increases, power grid network integrity problems become more challenging. To resolve these power integrity problems, the use of passive devices such as resistor, inductor, and capacitor is very important. To manage the power integrity with little noise or ripple, decoupling capacitors are essential in electronic packaging. The decoupling capacitors are classified into voltage regulator capacitor, board capacitor, package capacitor, and on-chip capacitor. For next generation packaging technologies such as 3D packaging or wafer level packaging on-chip MIM decoupling capacitor is the key element for power distribution and delivery management. This paper reviews the use and necessity of on-chip decoupling capacitor.

A new method for determining OBS positions for crustal structure studies, using airgun shots and precise bathymetric data (지각구조 연구에서 에어건 발파와 정밀 수심 자료를 이용한 OBS 위치 결정의 새로운 방법)

  • Oshida, Atsushi;Kubota, Ryuji;Nishiyama, Eiichiro;Ando, Jun;Kasahara, Junzo;Nishizawa, Azusa;Kaneda, Kentaro
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.15-25
    • /
    • 2008
  • Ocean-bottom seismometer (OBS) positions are one of the key parameters in an OBS-airgun seismic survey for crustal structure study. To improve the quality of these parameters, we have developed a new method of determining OBS positions, using airgun shot data and bathymetric data in addition to available distance measurements by acoustic transponders. The traveltimes of direct water waves emitted by airgun shots and recorded by OBSs are used as important information for determining OBS locations, in cases where there are few acoustic transponder data (<3 sites). The new method consists of two steps. A global search is performed as the first step, to find nodes of the bathymetric grid that are the closest to explaining the observed direct water-wave traveltimes from airgun shots, and acoustic ranging using a transponder system. The use of precise 2D bathymetric data is most important if the bottom topography near the OBS is extremely rough. The locations of the nodes obtained by the first step are used as initial values for the second step, to avoid falling into local convergence minima. In the second step, a non-linear inverse method is executed. If the OBS internal clock shows large drift, a secondary correction for the OBS internal clock is obtained, as well as the OBS location, as final results by this method. We discuss the error and the influence of each measurement used in the determination of OBS location.

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.