• Title/Summary/Keyword: Club foot

Search Result 22, Processing Time 0.022 seconds

Effect of Balance before and after Impact on the Velocity and Angle of Golf Club during Driver Swing (골프 드라이버 스윙 시 임팩트 전·후 신체 균형성이 클럽헤드의 속도와 각도에 미치는 영향)

  • Ryu, Ji-Seon;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.411-420
    • /
    • 2011
  • The purpose of this investigation was to determine whether correlations exist between balance and impact velocity, angular position, and maximum velocity of a club during drive swing. Twelve skilled golfers were recruited in this study. They were asked to perform ten swing trials and two trials were selected for analysis. Balance parameters were calculated via the force platform while kinematic variables were determined by using the Qualisys system. The results of the present study demonstrated that the average of COP velocity was faster in the medio-lateral direction rather than the anterio-posterior direction. Also, left foot's COP velocity and free torque were greater than the right foot's before impact. The range of the right foot's COP in the anterio-posterior direction before impact were correlated with the club velocity and angular position at impact. There was a negative correlation between the left foot's COP velocity before the impact and the velocity at impact. Additionally, the range and RMS of the left foot's free torque affected on the club angular position at impact and the maximum velocity at release, respectively. Finally, a negative correlation existed between the range of the right foot's free torque after the impact and club's maximum velocity at release.

Analysis of Plantar Foot Pressure During Golf Swing Motion of Pro & Amateur Golfer (프로와 아마추어 골퍼의 골프스윙 동작시 족저압력 비교 분석)

  • Lee, Joong-Sook;Lee, Dong-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.41-55
    • /
    • 2005
  • In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Regional change of force acting, in address, is evenly distributed on both feet. In back swing top, 76% on right foot, 75% on left foot as impact, and 86% on left foot as finish. As regional force acting, in address, pros get high marks on rare and inside of right foot and rare and outside for amateurs. In back swing top, it is higher as fore and inside of left foot, pros as rare part of right foot and amateurs as forefoot. In impact, it is higher for pros and amateurs in outside and rare part of left foot and fore and inside of right foot. In finish, for both pros and amateurs, it is higher for outside and rare parts of left foot. 2. For each club, forces are evenly distributed on both feet in address. In back swing top, the shorter a club is, the higher impact on right foot and the higher finish distribution on left foot. For all the clubs used, in each region, pros get higher on rare and inside of right foot and as amateurs on rare and outside of left foot in address. In back swing top, for all clubs, pros get higher on rare and outside of right foot as fore and outside for amateurs. In impact acting, for all clubs, rare and outside of left foot get higher. In finish, force concentrates on rarefoot. 3. On both feet force, right foot forces of amateurs is higher than those of pros in back swing top. In impact and finish, pros get higher on left foot.

Changes of Ground Reaction Forces by the Change of Club Length in Golf Swing (클럽의 길이 변화에 따른 골프 스윙의 지면반력 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.31-40
    • /
    • 2007
  • Proper weight shifting is essential for a successful shot in golf swing and this could be described by means of the ground forces between the feet and ground. It is assumed that the ground forces would different according to the club used because the length and swing weight of each club is different. But, in present, it is not clear what changes are made by the change of clubs and this affect the swing motion. Therefore this study focused on the investigation of the changes of the ground forces and ground reaction forces (GRF) by the change of club length. The subjects were three professional male golfers. Four swings (driver, iron 3, iron 5, and iron 7) for each subject were taken by two high speed video cameras and two AMTI force platforms were used to measure the GRF simultaneously. Kwon GRF 2.0 and Mathcad 13 software were used to post processing the data. Changes of the three major component of GRF (Vertical, lateral, anterior-posterior force) at 10 predefined events were analyzed including the maximum. Major findings of this study were as follows. 1. Vertical forces; - There were no significant changes until the top of backswing. - Maximum was occurred at the club horizontal position in the downswing for both feet. The shorter club produced more maximum forces than longer ones in the left foot, but reverse were true for the right foot. - Maximum forces at impact shows the same patterns. 2. Lateral forces; Maximum was occurred at the club horizontal position for both feet, but there were no lateral forces because the direction of two forces was different. Maximum force pattern by different clubs was same as the vertical component. 3. Anterior-posterior forces; - This component made a counter-clock wise moment about a vertical axis located between two foot until the club vertical position was reached during the backswing, and reverse moment were produced when the club reached horizontal at the downswing. - Also this component made a forward moment about a horizontal axis located in the CG during the fore half of the downswing, and a reverse moment until the club reached vertical at the follow through phase. Maximum was occurred at the club vertical in the downswing for both feet. The longer club produced more maximum forces than shorter ones for both feet.

A Study of Ground Reaction Forces During Professional Golfer's Swing with Different Golf Clubs (클럽별 골프 스윙 시 지면 반력 변화에 관한 연구)

  • Hur, You-Jein;Moon, Gun-Pil;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2005
  • The purpose of this study was to analysis golf swing in accordance with each club using ground reaction force data. The subject of this study was current professional golf players in Korea. Golf clubs used for this study were driver, iron4, iron7, and pitching. The ground reaction force for left and right foot was collected by one Kistler and one Bertec force platforms. Also collected visual data by NC high speed camera to check the phase which was composed of address, top of backswing, impact and finish. Sampling rate was 600Hz both ground reaction forces data and visual data. The conclusion are as follows. 1. An aspect of change for ground reaction force was that the weight between the left foot and right foot were contrary to each other in general as the phase. 2. Without regard to the type of golf club, the ratio of necessary ground reaction forces for each phase in accordance with address, top of backswing, impact, and finish was comparatively identical. 3. According to the type of golf club, the tendency of Fy was not varied. In terms of Driver, at the moment of impact, the weight of foot-both right and left-was moved to the movement direction of golf because of the rotation force from swing.

Ground Reaction Force and Foot Pressure Analysis During Golf Iron Swing by Gender (골프 아이언 스윙 시 성별에 따른 지면반력 및 족저압력 분석)

  • Park, Jae-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.167-174
    • /
    • 2010
  • This study aims to quantitatively compare and analyze kinetic variables in the motion of male and female professional golfers to suggest basic scientific materials for golf iron swing. Five male and five female professional golfers participated in this experiment. Ground reaction force and foot pressure were measured during performing 10 swings for each participants using an iron club. The result of the ground reaction force indicates that the force occurs at the left foot toward right(-) direction in the mid-downswing(E3) and impact(E4) events in X-axis, while it occurs at the right foot toward anterior(-) direction in Y-axis for both male and female, showing a big difference between them. Also, in Z-axis, large force occurs at the left foot in most events. The analyzed result on foot pressure indicates that men have the highest pressure and area at the left foot, and women have the highest ones at the right foot in the mid-downswing(E3) and impact(E4) events in the max foot pressure, ground contact area and average pressure. It is considered that there is difference of central movement methods between men and women. Thus, different education and training on golf swing should be necessary by gender due to their different patterns of golf iron swing.

Changes of Setup Variables by the Change of Golf Club Length (골프 클럽의 길이 변화에 따른 준비 자세의 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.95-104
    • /
    • 2005
  • To know the proper setup posture for the various clubs, changes of setup variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed videocameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. The variables divided into three categories 1) position and width of anterior-posterior direction 2) position and width of lateral direction 3) angles and evaluated based on the theories of many good golf teachers. Major findings of this study were as follows. 1.The stance (distance between ankle joints) was increased as the length of the club increased but the increasing width was not large. It ranges from 5cm to 10cm and professional player showed small changes. 2. Forward lean angle of trunk was decreased (more erected) as the length of the club increased. It ranges from 30 degrees for iron7 to 25 degrees for driver. 3. Angle between horizontal and right shoulder were increased as the length of the club increased. It ranges from 10 degrees to 20 degrees and professional player showed small changes. 4. Anterior-posterior position of the shoulders were located in front of the foot for all clubs and the difference between the shoulder and knee position was decreased as the length of the club increased. 5. Anterior-posterior position of grip (hand) was located almost beneath the shoulders (2.5cm front) for iron7, but it increased to 10cm for the driver. This grip adjustment makes the height of the posture increased only 5cm from iron7 to driver. 6. Lateral position of grip located at 5cm left for the face of iron7, but it located at the right side (behind) for the face of driver. 7. Lateral position of the ball located at the 40%(15cm) of stance from left ankle for iron7 and located at the 10% (5cm) of stance for driver. 8. Head always located at the right side of the stance and the midpoint of the eyes located at the 37% of stance from the right ankle for all clubs. This means that the axis of swing always maintained consistently for all clubs. 9. Left foot opened to the target for all subject and clubs. The maximum open angle was 25 degrees. Overall result shows that the changes of the setup variables vary only small ranges from iron7 to driver. Paradoxically it could be concluded that the failure of swing result from the excessive changes of setup not from the incorrect changes. These findings will be useful for evaluating the setup motion of golf swing and helpful to most golfers.

Van der Woude syndrome presenting as a single median lower lip pit with associated dental, orofacial and limb deformities: a rare case report

  • Richardson, Sunil;Khandeparker, Rakshit Vijay
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.4
    • /
    • pp.267-271
    • /
    • 2017
  • Although it is a rare developmental malformation, van der Woude syndrome is the most common form of syndromic orofacial clefting, accounting for approximately 2% of all cleft cases. The lower lip pits with or without a cleft lip or palate is characteristic of the syndrome. Findings, such as hypodontia, limb deformities, popliteal webs, ankylogossia, ankyloblepheron, and genitourinary and cardiovascular abnormalities, are rarely associated with the syndrome. This paper reports a rare case of van der Woude syndrome in a 10-year-old male patient with a single median lower lip pit and a repaired bilateral cleft lip and cleft palate that were associated with microstomia, hypodontia, and clubbing of the left foot with syndactyly of the second to fifth lesser toes of the same foot.

The Evaluation of Custom Foot Orthotics for Injury Prevention of Joggers (달리기 동호인들의 상해예방을 위한 맞춤형 발 보장구의 평가연구)

  • Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2006
  • The purpose of this study was to examine the effect of foot orthotics on the overall comfort and muscle activity during running. The subjects were 10 members from the joggers' club which consisted of 2 women and 8 men. These individuals ran on the treadmill by 4.0m/s speed with and without the custom foot orthotics. The data concerning the overall comfort was collected by a questionairre that examined the overall comfort, heel cushioning, forefoot cushioning, medio-lateral control, arch height, heel cup fit, shoe heel width, forefoot width, and shoe length The MegaWin ver. 2.1(Mega Electronics lid, Ma. Finland) was used to gain electromyography signals of the muscle activity; Tibialis anterior, medial gastronemius, lateral gastronemius, vastus lateralis, vastus medialis, biceps femoris, and rectus femoris were measured. The results of the study were as follows. 1. During running the overall comfort was higher for the foot arthotic condition than the nonorthotic condition. Among the inquiries the overall comfort showed the biggest difference comparing the two conditions. and the shoe heel width showed the highest score for contort. 2 The muscle activity of the biceps femoris, and vastus lateralis in the stance period decreased. due to the foot orthotics. The muscle activity of the vastus medialis in the swing period also decreased and the muscle activity tibialis anterior in the stance and swing stance decreased as well During running, orthotics showed positive result in foot comfort. The foot comfort related to decreased stress, muscle activity, and foot arch strain. Overall comfort and the adequate decrease of muscle activity were associated with injury prevention and the best method to prevent injury semms to be the maintenance of foot comfort.

Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system (족저압력분포 측정장비를 이용한 골프 스윙시 족저압 분석)

  • Lee, Dong-Ki;Lee, Joong-Sook;Lee, Bom-Jin;Lee, Hun-Sik;Kim, Young-Jae;Park, Seung-Bum;Joo, Jong-Peel
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2005
  • D. K. LEE, J. S. LEE, B. J. LEE, H. S. LEE, Y. J. KIM, S. B. PARK, J. P. JOO. Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 75-89, 2005. In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Address acting, forces concentrated in rare foot regions and lateral foot of right foot. Back swing top acting, relatively high force occurred in medial forefoot region of left foot and forefoot region of right foot. Impact acting, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the lateral region and rarefoot region of left foot. 2. Forces were increased in address of right foot with clubs length increased. All clubs, back swing top acting, high force value observed in the lateral forefoot region of right foot. All clubs, in impact, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the rarefoot region in driver and lateral foot region in iron on left foot. 3. Right foot forces distribution were increased in address, back swing top and left foot force distribution were increased in impact, finnish

Mechanical Analysis of golf driving stroke motion (골프드라이빙 스트로크시 역학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.205-219
    • /
    • 2002
  • This research seeks to identify the plantar pressure distribution graph and change in force in connection with effective golf drive strokes and thus to help ordinary golfers have appropriate understanding on the moving of the center of weight and learn desirable drive swing movements. To this end, we conducted surveys on five excellent golfers to analyze the plantar pressure applied when performing golf drive strokes, and suggested dynamic variables quantitatively. 1) Our research presents the desire movements as follows. For the time change in connection with the whole movement, as a golfer raises the club head horizontally low above ground from the address to the top swing, he makes a semicircle using the left elbow joint and shaft and slowly turns his body, thus lengthening the time. And, as the golfer twists the right waist from the middle swing to the impact with the head taking address movement, and does a quick movement, thus shortening the time. 2) For the change in pressure distribution by phase, to strike a strong shot with his weight imposed from the middle swing to the impact, a golfer uses centrifugal force, fixes his left foot, and makes impact. This showed greater pressure distribution on the left sole than on the right sole. 3) For the force distribution graph by phase, the force in the sole from the address to halfway swing movements is distributed to the left foot with 46% and to the right foot with 54%. And, with the starting of down swing, as the weight shifts to the left foot, the force is distributed to the left sole with 58%. Thus, during the impact and follow through movements, it is desirable for a golfer to allow his left foot to take the weight with the right foot balancing the body. 4) The maximum pressure distribution and average of the maximum force in connection with the whole movement changed as the left (foot) and right (foot) supported opposing force, and the maximum pressure distribution also showed much greater on the left sole.