• Title/Summary/Keyword: Co-simulation

Search Result 3,273, Processing Time 0.036 seconds

An FMI-based Time Management Scheme for Real-time Co-Simulation (실시간 Co-Simulation을 위한 FMI 기반 시간관리 기법)

  • Kyung, Dong-Gu;Joe, Inwhee;Kim, Wontae
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.426-434
    • /
    • 2020
  • FMI is being researched as a standard for linking large-scale simulation of CPS. In order to guarantee the reliability of the results in large-scale simulations using FMI, event handling through time management techniques is required. This paper aims to guarantee real-time performance and accuracy in large-scale co-simulation environments such as CPS. Synchronize the wallclock time and simulation time to ensure real time. Also, to ensure the accuracy, before the simulation, the event is checked and the simulation is performed with the smallest step size while maintaining the real time until the event occurrence time. As a result, the events occurring in the co-simulation environment are processed immediately and sequentially, ensuring the real-time performance and minimizing the numerical integration error by maximizing the simulation resolution. In the experiment, the proposed method was processed immediately, and it was confirmed that the numerical integration error is reduced by about 1/5 unlike the existing time management method which does not guarantee the resolution.

A Study on Power Electronic System Analysis using PSpice and Simulink Co-Simulation (PSpice와 Simulink를 이용한 전력전자 시스템 해석에 대한 연구)

  • Kim, Mu-Hyun;Chang, Dae-Woong
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.408-409
    • /
    • 2011
  • 본 논문에서는 전력전자 시스템 해석 시 PSpice와 Simulink를 이용한 Co-Simulation방법으로 회로 레벨(Circuit level)을 포함한 시스템 레벨(System level)에서의 시뮬레이션 해석 방법을 제안한다. 일반적인 전력전자 시스템의 설계 방법은 회로 레벨과 시스템 레벨에서 별도로 시뮬레이션하거나 이상적인 모델을 이용하여 시스템을 해석하여 왔으나, 이러한 시스템 설계 방법은 별도의 시제품을 제작하여 측정함으로써 시간과 금전적 손실이 있었다. 이러한 점을 보완하기 위해서 PSpice와 Simulink를 이용한 Co-Simulation방법을 제안한다.

  • PDF

Monte Carlo Simulation for Vapor-Liquid Equilibrium of Binary Mixtures CO2/CH3OHCO2/C2 H5OH, and CO2/CH3CH2CH2OH

  • Moon, Sung-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.811-817
    • /
    • 2002
  • Gibbs ensemble Monte Carlo simulations were performed to calculate the vapor-liquid coexistence properties for the binary mixtures $CO_2/CH_3OH$, $CO_2/C_2H_5OH$, and $CO_2/CH_3CH_2CH_2OH.$ The configurational bias Monte Carlo method was used in the simulation of alcohol. Density of the mixture, composition of the mixture, the pressure-composition diagram, and the radial distribution function were calculated at vapor-liquid equilibrium. The composition and the density of both vapor and liquid from simulation agree considerably well with the experimental values over a wide range of pressures. The radial distribution functions in the liquid mixtures show that $CO_2$ molecules interact more stogly with methyl group than methylene group of $C_2H_5OH$ and $CH_3CH_2CH_2OH$ due to the steric effects of the alcohol molecules.

Applications of online simulation supporting PWR operations

  • Wang, Chunbing;Duan, Qizhi;Zhang, Chao;Fan, Yipeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.842-850
    • /
    • 2021
  • Real Time Simulation (RTS) has long been used in the nuclear power industry for operator training and engineering purposes. And, Online Simulation (OLS) is based on RTS and with connection to the plant information system to acquire the measurement data in real time for calibrating the simulation models and following plant operation, for the purposes of analyzing plant events and providing indicative signs of malfunctioning. An OLS system has been developed to support PWR operations for CPR1000 plants. The OLS system provides graphical user interface (GUI) for operators to monitor critical plant operations for preventing faulty operation or analyzing plant events. Functionalities of the OLS system are depicted through the maneuvering of the GUI for various OLS functional modules in the system.

Analysis on the Performance of a Transcritical Cycle Using Carbon Dioxide (이산화탄소를 이용한 초월임계사이클의 성능해석)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.471-479
    • /
    • 2003
  • A simulation on the performance of a transcritical $CO_2$ heat pump system is carried out to investigate its characteristics for various operating conditions. Cycle simulation models are established for a steady-state simulation and are verified by comparing experimental data. Based on correlations and methods available in the literature, the processes in individual components of the transcritical cycle are simulated to analyze the performance of $CO_2$ transcritical heat pump system. The simulation models are good enough to predict the performance of a $CO_2$ transcritical cycle. Simulation results are provided to show the relative effects when varying the size of internal heat exchanger and the discharge pressure of a compressor.

Articulated Rotor/Aerodynamics Co-Simulation Using FMI Standard (FMI 표준을 활용한 관절형 로터/공력 연계시뮬레이션)

  • Paek, Seung-Kil;Park, Joongyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • The purpose of this research is to develop co-simulation methodology of codes developed in different modeling and simulation environment. We develop aerodynamic FMU(Functional Mock-up Unit) meeting FMI(Functional Mock-up Interface) specification version2 utilizing Legacy FORTRAN aerodynamic code based on unsteady vortex lattice method. It is concluded that making FMU is possible utilizing Legacy code made in any language which can be compiled and linked with object in FMI API coded in C language. This paper explains QTronic's method of using FMU SDK(Software Development Kit) and suggestion for using FORTRAN properly. Finally, we make articulated rotor/aerodynamics co-simulation by integrating aerodynamics FMU and rotor FMU developed by Modelica.

A Prediction Method using Markov chain for Step Size Control in FMI based Co-simulation (FMI기반 co-simulation에서 step size control을 위한 Markov chain을 사용한 예측 방법)

  • Hong, Seokjoon;Lim, Ducsun;Kim, Wontae;Joe, Inwhee
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1430-1439
    • /
    • 2019
  • In Functional Mockup Interface(FMI)-based co-simulation, a bisectional algorithm can be used to find the zerocrossing point as a way to improve the accuracy of the simulation results. In this paper, the proposed master algorithm(MA) analyzes the repeated interval graph and predicts the next interval by applying the Markov Chain to the step size. In the simulation, we propose an algorithm to minimize the rollback by storing the step size that changes according to the graph type as an array and applying it to the next prediction interval when the rollback occurs in the simulation. Simulation results show that the proposed algorithm reduces the simulation time by more than 20% compared to the existing algorithm.

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION - PART I: POWERTRAIN MODELLING

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.459-468
    • /
    • 2006
  • The objective of this paper is the development of the forward-looking dynamic simulation model of a hybrid electric vehicle(HEV) for a fuel economy study. The specification of the vehicle is determined based on two factors, engine peak power to curb weight ratio and specific engine power. The steady state efficiency models of the powertrain components are explained in detail. These include a spark ignition direct injection(SIDI) engine, an integrated starter alternator(ISA), and an infinitely variable transmission(IVT). The paper describes the integration of these models into a forward facing dynamic simulation diagram using the AMESim environment. Appropriate vehicle and driver models have been added and described. The controller was designed in Simulink and was combined with the physical powertrain model by the co-simulation interface. Finally, the simulation results of the HEV are compared with those of a baseline vehicle in order to demonstrate the fuel economy potential. Results for the vehicle speed error and the fuel economy over standard driving cycles are illustrated.

Co-Simulation and Simulation Integration Technology Development for SUV Vehicle Equipped with Electric Power Steering (EPS) (SUV - EPS 차량의 동시 시뮬레이션 기술 개발 및 시뮬레이션 통합 기술 개발)

  • B. C. Jang;Y. K. Eom
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.472-475
    • /
    • 2003
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the environmental consciousness and higher fuel efficiency. This paper describes the development of co-simulation technique and simulation integration technique of EPS control system with dynamic vehicle model. A full vehicle model interacted with EPS control algorithm is concurrently simulated on a single bump road condition. Dynamic responses of vehicle chassis and steering system resulting from road surface impact are evaluated and compared with proving ground experimental data. The comparisons will show reasonable agreement on tie-rod load. rack displacement, handle-wheel torque and tire center acceleration. This developed simulation capability can be used for EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

  • PDF