• Title/Summary/Keyword: Co-sintering

Search Result 832, Processing Time 0.029 seconds

Piezoelectric and Dielectric Properties of Low Temperature Sintering (K0.5Na0.5)NbO3 Ceramics according to Sintering Aid Li2CO3 (소결조제 Li2CO3 첨가에 따른 저온소결(K0.5Na0.5)NbO3 세라믹스의 압전 및 유전 특성)

  • Lee, Il-Ha;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.906-910
    • /
    • 2008
  • $(K_{0.5}Na_{0.5})NbO_3$ (NKN) ceramics doped with $Li_{2}CO_3$ as sintering aids were manufactured in order to develop the low temperature sintering ceramics for piezoelectric device. The sintering aids were proved to lower the sintering temperature of doped NKN ceramics due to the effect of $Na_{2}CO_{3}-Li_{2}CO_3$ liquid phase. All the specimens showed the orthorhombic phase without secondary phase. And also, the piezoelectric properties of specimens were improved with increasing $Li_{2}CO_3$ contents. At sintering temperature of $930^{\circ}C$, the density, electromechanical coupling factor (kp), mechanical quality factor (Qm) and dielectric constant(${\epsilon}_{\gamma}$), piezoelectric constant of 0.3 wt.% $Li_{2}CO_3$ added specimen showed the optimum values of $4.255 g/cm^3$, 0.37, 234, 309, 136 pC/N, respectively.

Solid State Sintering of Micrometric and Nanometric WC-Co Powders

  • Escobar, J.A.;Campo, F.A.;Serrano, C.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.350-351
    • /
    • 2006
  • A solid stage sinterizacion model of the WC-Co is applied on this work. These results are compaired with the experimental data obtained for nanometric and micrometric sinter powder in an electric furnace and micrometric in a plasma reactor (using Abnormal Glow Discharge AGD). The correlations obtained allow the prediction of the sintering behavior in AGD for nanometric powder. The activation of the solid state sintering is shown with the decraease of the WC size and the use of AGD

  • PDF

A Study on the Forsterite Porcelain as a High Frequency Insulator(II) (Influence of $BaCO_3$, excess MgO on the Properties of Forsterite Porcelain) (고주파용 절록재료로서의 Forsterite 자기에 관한 연구(II) (Forsterite 자기 성질에 미치는 과잉 Mg 성분과 $BaCO_3$의 영향))

  • 이웅상;황성연
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.3
    • /
    • pp.205-214
    • /
    • 1982
  • The method of lowering the sintering temperature and enlarging the range of sintering temperature in the manufacture of forsterite porcelain as a high frequency insulator was investigated. The four kinds of forsterite chamotte were calcinated at $1400^{\circ}C$. The forsterite bodies produced by adding $BaCO_3$ as a flux and 5% Kaolin as a bonding agent were heated in the range of sintering temperature. Sintering temperature tended to increase almost straightly as MgO exceded without $BaCO_3$. The range of sintering tem was at least $140^{\circ}C$. Specimens of MF-2-0, MF-2-A had superior mechanical strength and dielectric properties. The growing of the forsterite crystal was restricted and thus their grain size became fine and also the amount of crystal formation tended to decrease rapidly as $BaCO_3$ increased excessively.

  • PDF

Selective Laser Sintering of WC-Co Mixture (텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결)

  • 김광희;조셉비만
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.269-274
    • /
    • 2001
  • This paper describes the experimental results on direct selective laser sintering of WC-Co mixture. The experiments were carried out within an air, argon and nitrogen atmosphere. The main problem occurred during sintering within an air atmosphere was oxidation of WC-Co mixture. As the power of laser is increased and scanning speed is decreased, more severe oxidation takes place. Within an argon and nitrogen atmosphere the oxidation is reduced significantly. As the energy density is increased the thickness of the sintered layer is increased.

  • PDF

Microstructure and Mechanical Properties of Co-Cr-Mo alloy for CAD/CAM Applications fabricated by Powder Metallurgy Process (분말야금공법으로 제조된 CAD/CAM용 Co-Cr-Mo 합금의 미세조직 및 기계적 특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2015
  • Purpose: The aims of this study are compare with microstructure and mechanical properties of Co-Cr-Mo alloys fabricated by powder metallurgy(P/M) process and casting process respectively. Methods: Microstructure and micro-hardness were tested by SEM and Vickers Hardness Tester. The sintered specimen was produced by furnace-coolling after sintering, however the casting specimen were produced thru air-cooling and water-cooling after the casting. For observation of phase transformation during sintering, DSC analyzing was carried out. Results: Mean pore size of sintered Co-Cr-Mo alloy was $4.32{\mu}m$ and that of casting alloy was $1.63{\mu}m$. Hardness of sintered alloy was lower than water-quenched casting alloy. Conclusion: Proper sintering temperature of Co-Cr-Mo alloy was above $1,200^{\circ}C$ and pore size of casting specimen were finer than sintered specimen, but hardness were similar.

Fabrication and Evaluation of WC-3 wt%Co Compacts Fabricated by Spark Plasma Sintering (방전플라즈마소결법을 이용한 WC-3 wt%Co 소결체 제조 및 평가)

  • Choi, Jung-Chul;Chang, Se-Hun;Cha, Young-Hoon;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.357-361
    • /
    • 2008
  • Microstructure and mechanical properties of WC-3 wt% Co cemented carbides, fabricated by a spark plasma sintering (SPS) process, were investigated in this study. The WC-3 wt%Co powders were sintered at $900{\sim}1100^{\circ}C$ for 5min under 40MPa in high vacuum. The density and hardness were increased as the sintering temperature increased. WC-3 wt%Co compacts with a relative density of 97.1% were successfully fabricated at $1100^{\circ}C$. The fracture toughness and hardness of a compact sintered at $1100^{\circ}C$ were $21.6 MPa{\cdot}m^{1/2}$ and 4279 Hv, respectively.

Consolidation of Binderless and Low-Binder WC hardmetal by Vacuum Sintering (진공 소결공정에 의한 고밀도 바인더리스 및 극저바인더 초경합금의 제조)

  • Min, Byoung-June;Park, Young-Ho;Lee, Gil-Geun;Ha, Gook-Hyeon
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.315-319
    • /
    • 2007
  • Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was $2,800kgf/mm^2$ using binderless WC.

Co-sintering of M2/316L Layers for Fabrication of Graded Composite Structures

  • Firouzdor, V.;Simchi, A.;Kokabi, A.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.696-697
    • /
    • 2006
  • This paper presents the densification and microstructure evolution of bilayer components made from 316L stainless steel and M2 High speed steel during co-sintering process. The sintering was carried out at temperatures ranging from $1230-1320^{\circ}C$ in a reducing atmosphere. The addition of boron to 316L was examined in order to increase the densification rate and improve the sintering compatibility between the two layers. It was shown that the mismatch strain bettwen the two layers induces biaxial stresses during sintering, influencing the densification rate. The effect of boron addition was also found to be positive as it improves the bonding between the two layers.

  • PDF

Low Temperature Sintering and Dielectric Properties of CaCO3-Al2O3 Mixture and Compound with CAS-based Glass (CAS계 유리가 첨가된 CaCO3-Al2O3 혼합물 및 화합물의 저온 소결 및 유전 특성)

  • Yoon, Sang-Ok;Kim, Myung-Soo;Kim, Kwan-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.397-404
    • /
    • 2009
  • Effects of ceramic filler types and dose on the low temperature sintering and dielectric properties of ceramic/$CaO-Al_2O_3-SiO_2$ (CAS) glass composites were investigated. All of the specimens were sintered at $850{\sim}900^{\circ}C$ for 2 h, which conditions are required by the low-temperature co-firing ceramic (LTCC) technology. Ceramic fillers of $CaCO_3$, $Al_2O_3$, $CaCO_3-Al_2O_3$ mixture, and $CaCO_3-Al_2O_3$ compound ($CaAl_2O_4$), respectively, were used. The addition of $Al_2O_3$ yielded the crystalline phase of alumina, which was associated with the inhibition of sintering, while, $CaCO_3$ resulted in no apparent crystalline phase but the swelling was significant. The additions of $CaCO_3-Al_2O_3$ mixture and $CaAl_2O_4$, respectively, yielded the crystalline phases of alumina and anorthite, and the sintering properties of both composites increased with the increase of filler addition and the sintering temperature. In addition, the $CaAl_2O_4$/CAS glass composite, sintered at $900^{\circ}C$, demonstrated good microwave dielectric properties. In overall, all the investigated fillers of 10 wt% addition, except $CaCO_3$, yielded reasonable sintering (relative density, over 93 %) and low dielectric constant (less than 5.5), demonstrating the feasibility of the investigated composites for the application of the LTCC substrate materials.

Piezoelectric Characteristics of PMW-PNN-PZT Ceramics according to Post-Annealing Process (Post annealing에 따른 PMW-PNN-PZT 세라믹스의 압전 특성)

  • Yoo, Kyung-Jin;Yoo, Ju-Hyun;Park, Chang-Yub;Lee, Hyung-Gyu;Kang, Hyung-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.212-213
    • /
    • 2005
  • In this study, in order to develop low temperature sintering piezoelectric actuator, $Pb_{0.985}Bi_{0.01}(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_{0.13}(Zr_{0.50},Ti_{0.50})_{0.84}$ (PMW-PNN-PZT) ceramic systems were fabricated using $CaCO_3-Li_2CO_3$, sintering aid through a post-annealing process. The sinterability of PMW-PNN-PZT ceranics was remarkably enhanced by liquid phase sintering of $CaCO_3$ and $Li_2CO_3$. But, it was confimed form the X-ray diffraction pattern that the secondary phase along grain boundaries, deteriorated the piezoelectric properties. The secondary phase along grain boundaries was significantly removed by annealing after sintering. The 0.2wt% $Li_2CO_3$-0.25wt% $CaCO_3$-added PMW-PNN-PZT ceramics post-annealed at 900$^{\circ}C$ for 90min exhibited the excellent electromechanical coupling factor($k_p$) of 63.3% and piezoelectric constant($d_{33}$) of 452pC/N, respectively, for multilayer piezoelectricactuatorapplication.

  • PDF