• Title/Summary/Keyword: Coagulant

Search Result 543, Processing Time 0.02 seconds

Plateletpheresis: the Process, Devices, and Indicators of Product Quality (혈소판성분채집술: 채집과정, 장비, 성분채집혈소판 질의 지표들)

  • Jang, Chul-Soo;Kim, Sung-In;Kim, Hyun-Kyung;Kweon, Chang-Oh;Kim, Byung-Won;Kim, Dong-Chan;Kim, Yoon Suk;Rhee, Ki-Jong;Ryu, Jae-Ki
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.1030-1038
    • /
    • 2014
  • Platelet products are used to treat hemorrhagic or platelet dysfunction diseases. Plateletpheresis involves collecting the platelet components of blood using an apheresis blood-collection system. Various indicators are available for evaluating the qualities of the apheresis platelets. The productivity of platelet collection is evaluated through both the collection efficiency and collection rates. Platelet storage quality can be evaluated in vitro using several indicators, including visual appearance, metabolic activities, volume, platelet count, white blood cell count, microparticles, and various platelet activation markers. Platelet activation markers have been used as indicators of storage quality in various studies. Post-transfusion platelet quality can be evaluated based on the corrected count increment and the percentage of platelet recovery. Although various studies have investigated the aspects of plateletpheresis, no article has systemically presented assessments of the platelet products obtained from different plateletpheresis devices. The present study provides a review of plateletpheresis, including the specifics of the process, the types of devices employed, the platelet quality, the overall efficacy, and the evaluation indicator qualities. Furthermore, the differences in functionality among the different apheresis devices are discussed. Although adverse reactions to the citrate anti-coagulant have been reported, apheresis processing may provide a safer option for donors who are at a high risk for presyncopal or syncopal reactions related to whole blood collection.

In vitro Anti-hypertensive, Antioxidant and Anticoagulant Activities of Extracts from Haliotis discus hannai (전복(Haliotis discus hannai) 추출물의 혈압강하, 항산화능 및 항혈전능에 대한 in vitro 효과)

  • Kim, Hag-Lyeol;Kang, Seong-Gook;Kim, In-Chul;Kim, Seon-Jae;Kim, Du-Woon;Ma, Seung-Jin;Gao, Tiancheng;Li, Hua;Kim, Min-Jung;Lee, Tae-Hoon;Ham, Kyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.835-840
    • /
    • 2006
  • The purpose of this study was to examine the in vitro effects of body and visceral portion of Haliotis discus hannai on angiotensin converting enzyme (ACE) activity and antioxidant and anticoagulant capacity. Extracts from both abalone body and visceral portion using 80% ethanol showed a high ACE-inhibitory effect. While ACE-inhibitory effect of extracts of the body part was dose-dependent, visceral extracts did not show any difference by the level of concentration. ACE-inhibitory effect of the visceral portion was much higher than that of the body. Antioxidant capacity was increased with increasing concentration of 80% ethanol body extracts although the capacity was low. The 80% ethanol visceral extracts showed a similar level of antioxidant capacity to the body extract in low concentration. Water extracts showed a dose-dependent increase in the activity. There was no significant difference in the antioxidant activity between the body and the visceral part. Anticoagulant capacity of 80% ethanol extracts, which was measured using prothrombin time(PT), was higher in the body part than the visceral part. Water extracts of Haliotis discus showed no any significant effect on anticoagulant capacity. The in vitro effects were also examined after Haliotis discus was refrigerated for 48 hours. Higher ACE-inhibitory effect was observed for the visceral portion than the body, in particular, before the sample was refrigerated. Antioxidant effect of Haliotis discus increased with increasing level of the sample before it was refrigerated. However, there was a significant difference between the body and the visceral part, which showed significantly higher capacity. There was no significant difference between the body and visceral part in PT regardless of refrigeration. While activated partial thromboplastin time (APTT) showed no significant difference between body and visceral part, there was a significant difference in the capacity between before and after the refrigeration, which showed much lower coagulant capacity.

Production and biological applications for marine proteins and peptides- An overview (해양생물로부터 기능성 펩티드의 생산 및 응용)

  • Kim, Se-Kwon;Byun, Hee-Guk
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.278-301
    • /
    • 2018
  • Although more than 80% of living organisms are found in marine ecosystems, only less than 10% of marine resources have been utilized for human food consumptions and other usages. It is well known that marine resources (fish, shellfish and algae) have exceptional nutritional properties; however, their functional characteristic has not been completely discovered. It is believed that metabolites (organic compounds, proteins, peptides, lipids, minerals, etc.) play an important role to show its biological properties. Marine proteins and peptides are considered to be future drugs due to their excellent biological activities with a fewer adverse side effect. Marine peptides show several biological activities, including antimicrobial, antioxidant, anti-inflammatory, anti-cancer, anti-viral, anti-tumor, anti-diabetic, anti-hypertensive, anti-coagulant, immunomodulatory, appetite suppressing and neuroprotective effects. Therefore, the pharmaceutical, nutraceutical, and cosmeceutical companies have been paid attention to the marine peptides to commercialize into products. This current review mainly focused on the above mentioned biological activities of marine peptides and protein hydrolysates as a functional food and pharmaceutical applications. To commercialize these materials in industrial level required large quantity in high-purity level, and it is complicated to produce huge quantity from the marine resources due to insufficient raw materials, unavailability of raw materials through a year, hinder the growth with geographical variations, and availability of compounds in extreme small quantities. The best solution for these issues is to introduce new modern technologies such as artificial intelligence robots, drones, submersibles and automated raw material harvesting vessels in farming industries instead of man power, which will lead to 4th industrial revolution.