• Title/Summary/Keyword: Coal-tar pitch

Search Result 64, Processing Time 0.027 seconds

Phototoxic Dermatosis among Coal-tar Pitch Workers (콜타르 피치를 취급하는 근로자의 광독성 피부질환)

  • Jung, Cheol;Lim, Hyun-Sul;Kim, Doo-Hie;Sung, Yeol-Oh
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.1 s.56
    • /
    • pp.145-155
    • /
    • 1997
  • Interview survey and dermatological examination have been performed to investigate the health problems of workers continuously exposed to coal-tar pitch. The phototoxicity of coal-tar pitch was confirmed by the photopatch tests for six healthy adults. The main results are followings; 1. There was no special history of allergic diseases in both the exposed and non-exposed group. 2. The frequency of the phototoxic dermatosis and the coal-tar acne in the exposed group was significantly greate.(p<0.05) than that of the control group. In the exposed group, the phototoxic dermatosis and the coal-tar acne were observed in nine workers(90%) and seven workers(70%), respectively. However, those, disease were not observed in the control group. 3. Five results(83%) were positive to the photopatch test for coal-ta. pitch 48 hours after UVA irradiation. But the lesion was subsiding 72 hours after UVA irradiation. 4. Malignant cancers were not reported among workers ever exposed to coal-tar pitch. In conclusion, it appears that workers exposed to coal-tar pitch have high risks of phototoxic dermatosis and coal-tar acne. A health policy should be provided to prevent phototoxic dermatosis among coal-tar pitch workers. More studies are required to determine malignancy.

  • PDF

Characteristics of Pitch Production of Pyrolyzed Fuel Oil/Coal-tar Blending Feedstock by Thermal Polymerization Reaction (Pyrolyzed Fuel Oil/Coal-tar 혼합원료의 열중합 반응에 따른 Pitch 제조 특성)

  • Lee, Eunbyul;Kim, Hyeong Gi
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.328-333
    • /
    • 2020
  • In this study, blended feedstock derived pyrolyzed fuel oil (PFO) and coal-tar was prepared to produce a pitch by thermal polymerization reaction for manufacturing artificial graphite materials. The aromaticity value of 0.355 and 0.818 was obtained for PFO and coal-tar, respectively. In addition, PFO and coal-tar exhibited the difference tendency of weight loss curve for thermogravimetric analysis, which is related to the structural stability depending on the aromaticity and functional groups. The production characteristics confirmed that the pitch derived PFO showed lower production yield and higher softening point than that using blended feedstock. In particular, when comparing P360 (138.5 ℃) and B420 (141.4 ℃) having similar softening points, the production yields of both pitches exhibited 29.89 and 49.03 wt%, respectively. This is mainly due to the blending of PFO and coal-tar having high pitch polymerization reactivity including a large amount of alkyl groups and coal-tar having high thermal stability. This phenomenon indicated that the increased production yield is because of a synergic effect of both the high reactivity of PFO and thermal stability of coal-tar.

Preparation of Coal Tar Pitch as Carbon Fibers Precursor from Coal Tar (콜타르로부터 탄소섬유 제조를 위한 프리커서용 석탄계 핏치의 제조)

  • Ko, Hyo Joon;Park, Chang Uk;Cho, Hyo Hang;Yoo, Mi Jung;Kim, Myung-Soo;Lim, Yun-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.276-280
    • /
    • 2013
  • Coal tar is the primary feedstock of premium graphitizable carbon precursor. Coal tars are residues formed as byproducts of thermal treatments of coal. Coal tar pitches were prepared through two different heat treatment schedules and their properties were characterized. One was prepared with argon and oxidation treatment with oxygen; the other was prepared with oxygen treatment at low temperature and then argon treatment at high temperature; both used coal tar to prepare coal tar pitches. To modulate the properties, different heat treatment temperatures ($300{\sim}400^{\circ}C$) were used for the coal tar pitches. The prepared coal tar pitches were investigated to determine several properties, such as softening point, C/H ratio, coke yield, and aromaticity index. The coal tar pitches were subject to considerable changes in chemical composition that arose due to polymerization after heat treatment. Coal tar pitch showed considerable increases in softening point, C/H ratio, coke yields, and aromaticity index compared to those characteristics for coal tar. The contents of gamma resin, which consists of low molecular weight compounds in the pitches and is insoluble in toluene, showed that the degree of polymerization in the pitches was proportional to C/H ratio. Using an oxidizing atmosphere like air to prepare the pitches from coal tar was an effective way to increase the aromaticity index at relatively low temperature.

Characterization of Pitch Derived from Petroleum Residue and Coal-tar (석유계 잔사유 및 coal-tar의 핏치 개질 특성)

  • KIM, JIHONG;KIM, HYEONGGI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.612-619
    • /
    • 2016
  • Pitch synthesis reaction was studied based on the effect for chemical composition of feedstock. Feedstock was selected as pyrolyzed fuel oil (PFO) and coal-tar (CT), which are by-products in petroleum and steel industry. Pitch was prepared at $420^{\circ}C$ for 180 minutes on atmospheric pressure by thermal treatment. Thermal stability and softening point (SP) of the prepared pitches were investigated and their molecular weight distribution was analyzed by MALDI-TOF. PFO has various aliphatic compounds and coal-tar has high aromaticity with 3 wt% of primary quinoline insolubles. The thermal property of PFO was enhanced with polymerization reaction during the thermal treatment with increased molecular weight range. But CT was inferior to PFO because of side reaction by hetero elements. CTP was appeared molecular weight by 0~200 m/z.

Blending effect of pyrolyzed fuel oil and coal tar in pitch production for artificial graphite

  • Bai, Byong Chol;Kim, Jong Gu;Kim, Ji Hong;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.78-83
    • /
    • 2018
  • Pyrolyzed fuel oil (PFO) and coal tar was blended in the feedstock to produce pitch via thermal reaction. The blended feedstock and produced pitch were characterized to investigate the effect of the blending ratio. In the feedstock analysis, coal tar exhibited a distinct distribution in its boiling point related to the number of aromatic rings and showed higher Conradson carbon residue and aromaticity values of 26.6% and 0.67%, respectively, compared with PFO. The pitch yield changed with the blending ratio, while the softening point of the produced pitch was determined by the PFO ratio in the blends. On the other hand, the carbon yield increased with increasing coal tar ratio in the blends. This phenomenon indicated that the formation of aliphatic bridges in PFO may occur during the thermal reaction, resulting in an increased softening point. In addition, it was confirmed that the molecular weight distribution of the produced pitch was associated with the predominant feedstock in the blend.

Changes of Microstructure and Properties of Manufactured Modified Pitches via Pressure Changes during Heat Treatments in Coal Tar Pitch (석탄계 타르의 열처리 중 압력변화에 따른 변성 콜타르 핏치의 미세구조 및 물성 변화)

  • Ko, Hyo Joon;Chung, Sung Mo;Han, Ji Hoon;Park, Chang Uk;Kim, Myung-Soo;Lim, Yun-Soo
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.293-300
    • /
    • 2014
  • Coal-tar pitch, a feedstock which can be heat-treated to create graphite, is composed of very complex molecules. Coal-tar pitch is a precursor of many useful carbon materials (e.g., graphite, carbon fibers, electrodes and matrices of carbon/carbon composites). Modified coal-tar pitch (MCTP) was prepared using two different heat-treatment methods and their properties were characterized and compared. One was prepared using heat treatment in nitrogen gas; the other was prepared under a pressure of 350 mmHg in air. The MCTPs were investigated to determine several properties, including softening point, C/H ratio, coke yield, formation of anisotropic mesophase and viscosity. The MCTPs were subject to considerable changes in chemical composition due to condensation and polymerization in the used-as-received coal-tar pitch after heat-treatment under different conditions. The MCTPs showed considerable increases in softening point, C/H ratio, and coke yield, compared to those of as-received coal-tar pitch. The MCTP formed by heat-treatment in nitrogen showed isotropic phases below $350^{\circ}C$ for 1 h of soaking time. However, MCTP heat-treated under high pressure (350 mmHg) showed isotropic phases below $300^{\circ}C$, and showed anisotropic phases above $350^{\circ}C$, for 1 h of soaking time. The viscosity of the MCTPs increased with increase in their softening points.

MCMB Synthesis using Coal Tar Pitch

  • Seo, Hyeon-Kwan;Suh, Jeong-Kwon;Hong, Ji-Sook;Suh, Dong-Hack;Lee, Jung-Min
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • MCMB (mesocarbon microbeads) has been synthesized from coal tar pitch, petroleum pitch and polymer compound generally. But yield of MCMB was low about 20~40 wt% and was not above 50 wt%. Neither MCMB was replaced with natural graphite because of economic performance, refining MCMB, and control of the particle size distribution. This study was performed to elevate yield of MCMB and to develop technique of particle size distribution. As the result, yield of MCMB that was synthesized from coal tar pitch increased more than 60 wt% about raw material and particle size of MCMB was restrained according to control of QI (quinoline insoluble) ingredient in raw pitch, heat treatment temperature and time.

  • PDF

Raman Spectroscopical Evaluations of Carbonization and Graphitization of Coal Tar Pitch

  • Kim, Y.M.;An, K.L.;Kim, C.;Choi, Y.O.;Park, S.H.;Yang, K.S.;Lee, W.E.
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • Raman spectroscopy has been used to investigate the structure of coal tar pitch heat-treated up to $3000^{\circ}C$ by using 514.5 run Ar ion laser line. Four critical temperature ranges were found on pyrolyzing coal tar pitch, which correspond to four distinct processes from disordered carbons to the well-ordered graphite structure. The range of heat treat temperature (HTT) below $1000^{\circ}C$ corresponds to gas evolution during the pyrolysis of coal tar pitch. Above the HTT are correlated to rearrangements of enlarged molecules, growth of the molecules along the direction of plane, finally stacking in the normal direction of the plane, in the respective HTT ranges of 1000-2000, above 2000 and $2500-3000^{\circ}C$.

  • PDF

Studies on the Manufacturing of Carbonaceous Products (Ⅰ) Effects of the Binder by Cutting Condition of Coal Tar (炭素製品 製造에 關한 硏究 (第 1 報) Coal tar의 Cutting 條件에 依한 粘結劑로서의 檢討)

  • Won Dal Hyun;Ju Seong Lee;Hi Wook Kim
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.98-102
    • /
    • 1964
  • As a practical method to produce the carbonaceous binder, the destructive distillation of coal tar has been studied. The optimum condition on binder in various temp. and cutting time were examined and the compositions of pitch were also examined in connection with ${\alpha},\;{\beta}\;and\;{\gamma}$ by solvent extraction. Coke powder was mixed with binder as treated pitch in the proportions of 77% of coke to 23% of pitch, to give a plastic mix which could then be pressed into molding. The properties of baked body after molding was tested. It was found that cutting of the coal tar at 350${\circ}C$, for 30 min., at 300${\circ}C$. for 1 hr., and at 250${\circ}C$. for 8 hrs. were good condition. Particularly, we found that the cutting of the coal tar obtained by destructive distillation at high temp. and in minimum period of time had shown the best condition for utilization of carbonaceous pitch as binder. The above mentioned cutting condition results in good quality of pitch which is available to be used as binder in carbon industry.

  • PDF

Study on the Characteristics of Cell Reactions for Petroleum- and Coal Tar Pitch-based Carbons as a Negative Electrode for Li-iion Batteries (리튬이온전지용 부극재료인 페트롤리엄 및 콜타르 피치 카본의 전지반응 특성에 관한 연구)

  • 박영태;유광수;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.128-133
    • /
    • 2000
  • In this work, soft carbons produced by pyrolysis of petroleum and coal-tar pitch were used as the negative electrode for Li-ion batteries. We studeid the charge/discharge capacity and the interfacial reaction of these electrodes by constructing a half cell. Charge/discharge property was studied by a constant-current step and the interfacial reaction between the electrolyte and the surface of a carbon electrode was studied by the cyclic voltammetry. The initial charge/discharge capacity for the coal-tar pitch carbon increased exceedingly with the heat treatment temperature. On hte other hand, the capacity of the petroleum pitch carbon increased with temperature up to 1000$^{\circ}C$, thereafter decreased continuously. While the charge capacity decreased with the cycle number, the reversibility increased above 90%. In addition, the thermal stability and crystallization of petroleum and coal-tar pitches were analyzed by TGA and XRD, respectively.

  • PDF