• Title/Summary/Keyword: Coated Carbide Tool

Search Result 58, Processing Time 0.027 seconds

Comparison of Cutting Characteristics between Cermet, Carbide and Coated Carbide Tools in Turning (선삭가공에서 서멧과 초경 및 코팅 초경공구의 절삭특성 비교)

  • 안동길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.186-194
    • /
    • 2000
  • The purpose of this study is to investigate the difference in cutting characteristics of cermet, carbide and coated carbide tools in the similar application range via turning test of various conditions. The cermet and carbide tools in the range of ISO P10 grade were developed using optimum compositions with a view to obtaining a high toughness and hardness by PM process. First mechanical properties were characterized on these tools. Experimental results of wear behaviour and resistance to fracturing were presented and discussed in the turning of gray cast iron and alloy steels by cermet, carbide and coated carbide tools. The coated carbide tool shows similar cutting performance compared to the cermet, while the cermet has better combination of wear resistance and toughness of high speed (V=500m/min) cutting in comparison with carbide and coated carbide tools, and also shows a potentiality for cast iron cutting. Fe adhesive behaviour on the tools and surface roughness of workpieces were explained by chemical affinity between tools and workpieces.

  • PDF

Tool Geometry for Improving Tool-Life in Turning of STS 304 (STS 304의 선삭에서 공구수명 향상을 위한 공구형상)

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.581-584
    • /
    • 2003
  • The austenitic STS 304 stainless steel was turned to clarify the effects of tool geometry on the tool wear. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, exhibiting larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN-TiCN-TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with large approach angle showed the longest tool life of all tools used in this tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of 15$^{\circ}$became smaller than with that of -5$^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.

  • PDF

Tool-Wear Characteristics in Turning of STS 304 (STS 304 선삭시의 공구마멸 특성)

  • 이재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.56-64
    • /
    • 2003
  • The effect of tool geometry on the tool wear in turning the austenitic stainless steel, STS 304 was investigated. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, showing larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN- TiCN- TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with the larger side cutting edge angle showed the smallest tool wear in all tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of $15^{\circ}$ became smaller than with that of $-5^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.

Performance Characteristics of CVD Diamond Cutting Tools

  • Oles, E.J.;Cackowski, V.J.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 1996
  • CVD diamond tools are becoming more widely used in industry as an economic alternative to polycrystalline diamond (PCD) for machining non-ferrous and non-metallic materials. Although CVD diamond-sheet tools have been on the market for several years, diamond-coated carbide inserts have become available only recently, with the successful resolution of long-standing adhesion problems. Diamond coating morphology on the rake surface of the tool affects chip formation favorably, whereas a microscopically rough, faceted morphology on the flank surface of the tool produces a rough workpiece finish. Workpiece finish can be improved by using a coated tool with a larger nose radius. The tool life provided by diamond-coated tools(~30 $\mu\textrm{m}$ thick) can meet or exceed that of PCD tools, depending on the characteristics of the workpiece material. When using diamond-coated carbide tools in milling, a sharp-edged PCD tool should be used in the wiper position of the cutter to minimize workpiece roughness and burr formation.

  • PDF

A Study on the Machinability of STS 304 (STS 304의 절삭성에 관한 연구)

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.779-782
    • /
    • 2000
  • This paper aimes to clarify the effects of tool geometry on the tool life in machining of STS 304. The main conclusions obtained were as follows. The lift of TiN coated cermet tool was the longest, exhibiting shorter life in the order of P2O, cermet, TiCN coated carbide and TiAIN coated carbide tools. S-type tool showed the best performance of all tools used in this tests due to preventing the boundary wear of the side cutting edge.

  • PDF

The Tin coating for life-eztension on the cutting bites. (절삭가공용 바이트 수명연장을 위한 TiN 코팅에 관한 연구)

  • 백영남;유송민;오환섭;전인철;김강법
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.400-406
    • /
    • 1998
  • Tool life characteristics were investigated for the TiN coated (PVD) tungsten carbide cutting tools to improve the tool life Experimental variables for Tin coating were coating time and cathode bias voltage and cuting variables were cutting speed and feel rate. As a experiment result, TiN coated tool was extended about from 2.14 to 2.7 times than that of not coated tungsten carbide tools. Also, coating thinkness is much affected to tool life.

  • PDF

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid.;Bouziane, Abderrahim
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

Development of a Drill Tool for CFRP Machining and Evaluation of Drilling Processing (탄소섬유 강화 복합재 가공용 드릴 공구 개발 및 홀 가공성 평가)

  • Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.8-13
    • /
    • 2020
  • Carbon fiber-reinforced plastics (CFRPs) are extremely strong and light fiber-reinforced plastics containing carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as in the aerospace, automotive, and ship superstructure industries. In CFRP drilling, the tool performance greatly varies depending on the tool shapes, cutting conditions, and diamond coating. This study developed a new type of tungsten carbide drill with multi-blade edges to evaluate the surface quality of CFRP materials according to the coating thickness of diamond-coated drills. Experiments on tool wear, surface roughness, and burr formation were conducted. The bore exit quality of a 12 mμ -coated drill was better than that of a 6 mμ -coated drill. The superior effects of the 12 mμ -coated drill and the good surface quality of CFRP were also demonstrated.

Machinability evaluation of non-coated end mill tool fabricated by ultra-fine WC (초미립 WC로 제작된 무코팅 엔드밀 공구의 가공성 평가)

  • Kim D.H.;Kwon D.H.;Kang I.S.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.13-14
    • /
    • 2006
  • The quality of tool material is very important factor in machining evaluation. The characteristics of tungsten carbide, such as grain size and hardness, and density are depending on the variation of Co composition and WC size. In this study, the non-coated end mill which is made of ultra-fine tungsten carbide is investigated by measuring tool wear and tool lift test. The machining test is conducted with high hardened workpiece under high-speed cutting condition.

  • PDF

Comparison of TiAlN DLC and PCD Tool Wear in CFRP Drilling (CFRP 드릴링에서 TiAlN DLC 코팅과 PCD의 공구마모 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2022
  • A high-hardness tool material is required to reduce extreme abrasive wear when drilling carbon fiber reinforced plastic (CFRP). Single-crystal diamond is the hardest material in the world, but it is very expensive to be used as a cutting tool. Polycrystalline diamond (PCD) is a diamond grit fused at a high temperature and pressure, and diamond-like carbon (DLC) is an amorphous carbon with high hardness. This study compares DLC coatings and PCD inserts to conventional TiAlN-coated tungsten carbide drills. In fiberglass and carbon fiber reinforced polymer drilling, the tool wear of DLC-coated carbide was approximately half that of TiAlN-coated tools, and slight tool wear occurred in the case of PCD insert end drills.