• Title/Summary/Keyword: Coda Q

Search Result 19, Processing Time 0.022 seconds

Characteristics of Coda Wave Attenuation in the Kyungsang Basin (경상분지에서의 Coda파의 감쇠특성)

  • 김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.35-40
    • /
    • 1999
  • In order to know the characteristics of attenuation of coda wave in the Kyungsang Sedimentary Basin quality factor for coda wave or coda Q is estimated from the earthquake data recorded in the KIGAM microearthquake network. The single scattering model for coda wave generation is adopted in estimating coda Q. Coda Q appears to be largely dependent on the normalized time(a) which is the ratio of elapsed time to S-wave travel time. In the present study coda Q(Qc) is estimated in the range of a=1.5-3.Q and expressed in terms of frequency(f). The deduced function in the range of 1 to 25 Hz is Qc=36.8283 f1.15095 to represent the strong dependence of coda Q on frequency. It is found that the difference of Qc between U-D N-S and E-W components is negligible, This face supports the back-scattering theory that coda were originates from scattered waves by randomly distributed heterogeneities in the crust. On the other hand it is observed that the coda Q increases with depth.

  • PDF

Attenuation of Coda Wave in the Southeastern Korea (한반도 남동부에서의 Coda파 감쇠)

  • 김성균
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • In order to know the characteristics of attenuation of coda wave in the Kyungsang Sedimetary Basin, quality faclity factor for coda wave (coda Q) is estimated from the earthquake data recorded in the KIGAM local seismic network. Thesingle scattering model for coda wave generation is adopted is adopted in estimating coda Q. In the present study, coda Q(Qc)is estimated in the range of $\alpha$=1.5~3.0, where $\alpha$ denotes the normalized time to S-wave travel time and expressed in terms of frequency (f). The deduced function in the range of 1 to 25 Hz is Qc=36.8283$f^{1.15095}$ which represents the strong dependence of coda Q on frequency. It is found that the difference of Qc between U-D, N-S, and E-W components is negligible. This fact suports the back scattering therory that coda wave originates from scattered waves by randomly distributed heterogenities in the crust On the other hand, it is observed that the coda Q increases with increasing epicentral distence. This observation suggests that QC increases with depth.

  • PDF

Regional variation of the coda Q in the Korean Peninsula (한반도 coda Q의 지역적 변화)

  • Yun, Suk-Young;Lee, Won-Sang;Lee, Kie-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.37-42
    • /
    • 2005
  • We analyzed spectral attenuation of coda waves and estimated coda Q values in the crust of the Korean peninsula. 574 NS-component seismograms registered by the Korea Meteorological Administration (KMA) and Korea Institute of Geology, Mining and Materials (KIGAM) seismic networks with epicentral distances less than 100 km and sampling rate greater than 80 Hz were selected for this study. We estimated coda Q values using the single isotropic scattering model at center frequencies of 1.5, 3, 6, 9, 12, 15, and 18 Hz with 20 s time window starting from double of the S-wave arrival times. Estimated coda Q value at 1 Hz ($Q_0$) and n value range 50 to 250 and 0.5 to 1.0, respectively, and they are well correlated with the regional geology in the Korean peninsula. The $Q_0$ values in western Korea agree well with those of eastern China.

  • PDF

Q Estimates Using the Coda Waves in the Kyeongsang Basin (Coda 파를 이용한 경상분지에서의 Q값 추정)

  • 이기화
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.67-74
    • /
    • 1999
  • In this study, coda Q has been determined by the single scattering model in the Kyeongsang Basin region using the decay of the amplitudes of coda waves on bandpass-filtered seismograms of local microearthquakes in the frequency range 1.5~18 Hz. Reported frequency dependence of Q is of the form $Q_C=Q_O ^n$$(83.9{ll}Q_0{ll}155.9,;0.76{ll}n{ll}1.05$. Considering a model incorporating both scattering and intrinsic attenuation, and assuming that the attenuation is entirely due to the scattering loss, the minimum mean free paths are about 51~56 km and the coefficients of inelastic attenuation(${\gamma}$) are between 0.0093 and 0.0098 were found. Earthquake-station paths pass through the fault zone show high attenuation and strong frequency dependency compared to other ones.

  • PDF

Q estimates using the Coda waves in the Kyeongsang Basin (Coda 파를 이용한 경상분지에서의 Q 값 추정)

  • 이원상
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.383-390
    • /
    • 1998
  • 이 연구의 목적은 경상분지에 설치되어있는 지진계에 기록된 자료를 이용하여 coda Q값을 계산하고 그것이 어느 정도 주파수에 의존하는 가를 추정해 보는 것이다. 분석한 주파수 영역은 1.5Hz에서 18Hz까지이다. 자료는 3조로 나누어 처리하였으며, 단일 산란 이론을 적용하였다. 그리고 매질의 특성을 살펴보고자 minimum mean free path 와 비탄성 감쇠계수를 계산했다. 계산 결과는 Q0값이 83.85 ~155.88로 단층대를 지나는 경로를 가진 자료에서 비교적 낮은 Q 값이 결정 되었고 n은 0.7615~1.0466이다.

  • PDF

A Study of Q$_P^{-1}$ and Q$_S^{-1}$ Based on Data of 9 Stations in the Crust of the Southeastern Korea Using Extended Coda Normalization Method (확장 Coda 규격화 방법에 의한 한국남동부 지각의 Q$_P^{-1}$, Q$_S^{-1}$연구)

  • Chung, Tae-Woong;Sato, Haruo;Lee, Kie-Hwa
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.500-511
    • /
    • 2001
  • For the southeastern Korea aound the Yangsan fault we measured Q$_P^{-1}$ and Q$_S^{-1}$ simultaneously by using the extended coda-normalization method for seismograms registered at 9 stations deployed by KIGAM. We analyzed 707 seismograms of local earthquakes that occurred between December 1994 and February 2000. From seismograms, bandpass filtered traces were made by applying Butterworth filter with frequency-bands of 1${\sim}$2, 2${\sim}$4, 4${\sim}$8, 8${\sim}$16 and 16${\sim}$32 Hz. Estimated Q$_P^{-1}$ and Q$_S^{-1}$ values decrease from (7${\pm}$2)${\times}$10$^{-3}$ and (5${\pm}$4)${\times}$10$^{-4}$ at 1.5 Hz to (5${\pm}$4)${\times}$10$^{-3}$ and (5${\pm}$2)${\times}$10$^{-4}$ at 24 Hz, respectively. By fitting a power-law frequency dependent to estimated values over the whole stations, we obtained 0.009 (${\pm}$0.003)f$^{-1.05({\pm}0.14)$ for Q$_P^{-1}$ and 0.004 (${\pm}$0.001)f$^{-0.75({\pm}0.14)$) for Q$_S^{-1}$, where f is frequency in Hz.

  • PDF

Comparative Study on the Attenuation of P and S Waves in the Crust of the Southeastern Korea (한국 남동부 지각의 P파와 5파 감쇠구조 비교연구)

  • Chung, Tae-Woong
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2001
  • The Yangsan fault in the southeastern Korea has been receiving increasing attention in its seismic activity. In this fault region, by using the extended coda-normalization method for 707 seismograms of local earthquakes, were obtained 0.009f$^{-1.05}$ and 0.004f$^{-0.70}$ for fitting values of Q$_p^{-1}$ and Q$_s^{-1}$, respectively. These results indicate that Q$_p^{-1}$ and Q$_s^{-1}$ in the southeastern Korea is the lowest level in the world although the exponent values agree well with those in the other areas. The low Q-1 is not related to the movement of the Yangsan fault but to the tectonically inactive status like a shield area.

  • PDF

A Study on the Attenuation of High-frequency P and S Waves in the Crust of the Southeastern Korea using the Seismic Data in Deok-jung Ri (덕정리 지진자료를 이용한 한국남동부지역 지각의 P, S파 감쇠구조 연구)

  • Chung, Tae-Woong;Sato, Haruo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.193-200
    • /
    • 2000
  • The attenuation characteristics($Q^{-1}$) are important factors representing the physical properties of the Earth interiors, and are essential for the quantitative prediction of strong ground-motion. Based on 156 earthquakes including 76 single-station record on the seismic station located Deok-jung Ri, southeastern Korea, we made the simultaneous measurement of P and S wave attenuation($Q_P^{-1}\;and\;Q_S^{-1}$) by means of extended coda-normalization method. Estimated $Q_P^{-1}\;and\;Q_S^{-1}$ decreased from $1{\times}10^{-2}\;and\;9{\times}10^{-3}$ at 1.5 Hz to $6{\times}10^{-4}\;and\;5{\times}10^{-4}$ at 24 Hz, respectively. This can be expressed by $Q_P^{-1}=0.01\;f^{-1.07}\;and\;Q_S^{-1}=0.01\;f^{-1.03}$ which indicate strong frequency dependence.

  • PDF

The Attenuation Structure of the South Korea: A review

  • Chung, T. W.;Noh, M. H.;Matsumoto, S.
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.199-207
    • /
    • 2006
  • Fukuoka earthquake on March 20, 2005 showed the potential hazard of large events out of S. Korea. From the viewpoint of seismic hazard, seismic amplitude decrease Q-1 is very important. Related to the crustal cracks induced by the earthquakes, the value of Q-1- high Q-1 regions are more attenuating than low Q-1 regions - shows a correlation with seismic activity; relatively higher values of Q-1 have been observed in seismically active areas than in stable areas. For the southeastern and central S. Korea, we first simultaneously estimated QP-1 and QS-1 by applying the extended coda-normalization method to KIGAM and KNUE network data. Estimated QP-1 and QS-1 values are 0.009 f-1.05 and 0.004 f-0.70 for southeastern S. Korea and 0.003 f -0.54 and 0.003 f -0.42 for central S. Korea, respectively. These values agree with those of seismically inactive regions such as shield. The low QLg-1 value, 0.0018f -0.54 was also obtained by the coda normalization method. In addition, we studied QLg-1 by applying the source pair/receiver pair (SPRP) method to both domestic and far-regional events. The obtained QLg-1 for all Fc is less than 0.002, which is reasonable value for a seismically inactive region.

  • PDF

Comparative Study on Coda Attenuation of the Southeastern Korean Peninsula (한반도 남동부지역 코다 Q의 비교 분석)

  • Chung, Tae-Woong;Choi, Soo-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.249-253
    • /
    • 2011
  • Based on intrinsic and scattering quality factor ($Q_i^{-1}$ and$Q_s^{-1}$) obtained from the seismic data of the southeastern Korean Peninsula, the expected coda quality factor (${Q_{Cexp}}^{-1}$) was theoretically calculated using multiple scattering model, and was compared with other quality factors such as $Q_i^{-1}$, $Q_s^{-1}$, and observed $Q_C^{-1}$ obtained by single scattering model. While the ${Q_{Cexp}}^{-1}$ values are typically comparable to the $Q_i^{-1}$ values, the $Q_C^{-1}$ values are different from the ${Q_{Cexp}}^{-1}$ values except for the higher frequency. Future works require to consider depth-dependent attenuation.