• Title/Summary/Keyword: Coherent beam combination

Search Result 3, Processing Time 0.018 seconds

Numerical Modeling of Optical Energy Transfer Based on Coherent Beam Combination under Turbulent Atmospheric Conditions (대기 외란 상황에서 결맞음 빔결합을 통한 광학 에너지의 전달 방법 수치 모델링)

  • Na, Jeongkyun;Kim, Byungho;Cha, Hyesun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.274-280
    • /
    • 2020
  • In this paper, the effect of atmospheric turbulence is numerically modeled and analyzed via a phase-screen model, in regard to long-range optical energy transfer using coherent beam combination. The coherent-beam-combination system consists of three channel beams pointing at a target at a distance of 1-2 km. The phase and propagation direction of each channel beam are assumed to be corrected in an appropriate manner, and the atmospheric turbulence that occurs while the beam propagates through free space is quantified with a phase-screen model. The phase screen is statistically generated and constructed within the range of fluctuations of the structure constant Cn2 from 10-15 to 10-13 [m-2/3]. Particularly, in this discussion the shape, distortion, and combining efficiency of the 3-channel combined beam are calculated at the target plane by varying the structure constant used in the phase-screen model, and the effect of atmospheric turbulence on beam-combination efficiency is analyzed. Analysis with this numerical model verifies that when coherent beam combination is used for long-range optical energy transfer, the received power at the target can be at least three times the power obtainable by incoherent beam combination, even for maximal atmospheric fluctuation within the given range. This numerical model is expected to be effective for analyzing the effects of various types of atmospheric-turbulence conditions and beam-combination methods when simulating long-range optical energy transfer.

Study of Monitoring Parameters for Coherent Beam Combination through Fourier-domain Analysis of the Speckle Image (스펙클 이미지의 푸리에 공간 분석을 통한 결맞음 빔결합 상태 모니터링 변수 도출)

  • Park, Jaedeok;Choe, Yunjin;Yeom, Dong-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.268-273
    • /
    • 2020
  • We analyze the characteristics of the coherent beam combination of lasers by monitoring the speckle pattern of the beam reflected from a scattering medium. Three collimated laser sources with high coherence are focused on a scattering target using a lens, and we then examine the speckle pattern of the returned beam in the Fourier domain. We observe that the size of the speckle pattern changes, depending on the focused-beam size or degree of spatial overlap of the three beams. Furthermore, through Fourier-domain analysis of the speckle pattern we obtain the monitoring variable to qualify the efficiency of the coherent beam combination.

High Power Coherent Beam Combining Setup Using Modified Cascaded Multi-dithering Technique

  • Ahn, Hee Kyung;Lee, Hwihyeong;Kong, Hong Jin
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.431-435
    • /
    • 2018
  • A modified setup of a CMD technique for high power coherent beam combining was presented to address an issue of low damage threshold of electro-optic modulators. The feasibility of the modified setup was demonstrated by combining eight fiber beams, and it was successfully performed with ${\lambda}/44$ of residual phase error and 100 Hz of control bandwidth. It is expected that the modified CMD setup facilitates ultra-high power coherent beam combination without a limitation caused by the low damage threshold of electro-optic modulators.