• Title/Summary/Keyword: Coil design

Search Result 996, Processing Time 0.03 seconds

An Optimization of Inductive Coil Design for Thixoforging and Its Experimental Study (반용융 단조를 위한 유도가열용 코일설계의 최적화 및 실험적 연구)

  • Jung, Hong-Kyu;Kim, Nam-Seok;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 1999
  • The reheating of the billet in the semi-solid state as quickly and homogeneously as possible is one of the most important aspects. From this point of view, an optimal design of the induction coil is necessary. The objective of inductive coil designsi a uniform induction heating over the length of the billet. The effect of coil length, diameter, the gap between coil surface and billet and axial position of the billet on temperature distribution of billet has been investigated. These design parameters have an important effectiveness on the electro-magnetic field. Therefore, in this study an optimal coil design to minimize electromagnetic ed effect will be proposed by defining the relationship between billet length and coil length. In particular, key point in induction heating process is focussed on optimizing the coil design with regard to the size of the heating billet and the frequency of induction heating system. After demonstrating the suitability of an optimal coil design through the FEM simulation of the induction heating process, the results of the coil design are also applied to the reheating process to obtain a fine globular microstructure. Its considered that the reheating conditions of aluminum alloys for thixoforging and a new CAE model of the induction heating process are very useful for thixoforging practitioners including induction heating ones.

  • PDF

Optimal Design of the Optical Pickup Actuator Coil (광픽업 구동기 코일최적설계)

  • Yoon Young, Kim;Woochun, Kim;Jae Eun, Kim
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.352-355
    • /
    • 2004
  • The objective of this work is to develop a new design method to find optimal coils, especially the optimal coil configuration of an optical pickup actuator. In designing actuator coils, the developed Lorenz force in the coils along the desired direction should be made as large as possible while forces and torques in other directions should be made as small as possible. The design methodology we are developing is a systematic approach that can generate optimal coil configurations for given permanent magnet configurations. To consider the best coil configuration among all feasible coil configurations, we formulate the design problem as a topology optimization of a coil. The present formulation for coil design is noble in the sense that the existing topology optimization is mainly concerned with the design of yokes and permanent magnets and that the optimization of actuator coils is so far limited within shape or size optimization. Though the present design methodology applies to any problem, the specific design example considered is the design of fine-pattern tracking and focusing coils.

  • PDF

Development of the Coil Spring Design Program for Spring Operating Mechanism (스프링조작기 개발을 위한 코일 스프링 설계 프로그램 개발)

  • Kim, Min Soo;Jun, Chul Woong;Sohn, Jeong Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.281-285
    • /
    • 2017
  • Since the performance of the spring operating mechanism for a circuit breaker mainly depends on the dynamic behavior and mass of the coil spring, its dynamic analysis is required to evaluate the performance of the spring operating mechanism. In this study, a coil spring design program is developed for the spring operating mechanism. An experimental approach is used to find the variables satisfying the design constraints' requirements. The coil spring is formed by using a lumped mass spring model. This program offers reference data for the design of coil springs and for the spring operating mechanism.

Optimal Coil Configuration Design Methodology Using the Concept of Equivalent Magnetizing Current (등가자화전류를 이용한 최적코일형상 설계방법)

  • Kim, Woo-Chul;Kim, Min-Tae;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.43-49
    • /
    • 2007
  • A new electric coil design methodology using the notion of topology optimization is developed. The specific design problem in consideration is to find optimal coil configuration that maximizes the Lorentz force under given magnetic field. Topology optimization is usually formulated using the finite element method, but the novel feature of this method is that no such partial differential equation solver is employed during the whole optimization process. The proposed methodology allows the determination of not only coil shape but also the number of coil turns which is not possible to determine by any existing topology optimization concept and to perform single coil strand identification algorithm. The specific applications are made in the design of two-dimensional fine-pattern focusing coils of an optical pickup actuator. In this method, the concept of equivalent magnetizing current is utilized to calculate the Lorentz force, and the optimal coil configuration is obtained without any initial layout. The method is capable of generating the location and shape of turns of coil. To confirm the effectiveness of the proposed method in optical pickup applications, design problems involving multipolar permanent magnets are considered.

Optimization of Induction Coil Design for Reheating in Thixoforming Process (Thixoforming을 위한 재가열용 유도코일 설계의 최적화)

  • 김남석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.165-168
    • /
    • 1999
  • The coil design of induction heating systems and their optimization are of paramount importance for semi-solid processing(SSP) The authors of this paper present the coil design and optimization of a 60 Hz induction heating system for ALTHIX 86S (Al-6%_Si-3%Cu-0.3%Mg) alloy. An objective function on the basis of the optimization process for the coil design is proposed by introducing an optimization technique. Finally the results of the optimal coil design are also applied to the induction heating process to obtain a fine globular microstructure. The proposed new objective function based on the computational techniques would contribute to obtaining the thixoformed components with good mechanical properties and reducing lead time.

  • PDF

A Study on Design Method of the Cylindrical-Taper Section Coil Spring (등반경-테이퍼 소재 비선형 특성의 코일 스프링 설계 방법 연구)

  • 권혁홍;최선준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.175-181
    • /
    • 1998
  • The coil spring is used in the suspension of automotive vehicles and small omnibus. Recently, it can be adopted hardening type spring which spring constant is accompanied by increasing displacement to increase passenger comfortability. One of methods which assert this characteristic is cylindrical-taper section coil spring. In this paper we calculate ideal spring characteristic curve from the given vehicle conditions, and show the design method of the cylindrical-taper section coil spring.

  • PDF

Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity (피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계)

  • Lee, Su-Jeong;Lee, Ju Hee;Lee, Dong Yeon;Seo, TaeWon;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.

A Study on the Design and Analysis of a Voice Coil Linear Force Motor for Hydraulic Valve (밸브구동용 보이스 코일 선형 포스모터 설계와 해석 연구)

  • Park, C.S.;Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • The voice coil linear force motor is a kind of a direct drive motion device that uses a permanent magnetic field and coil winding to produce force. In order to design a voice coil linear force motor, an exact calculations of the required force, the flux density in air gap and the flux pathway are needed. A conventional method can be used usually to calculate the flux density in air gap, but with this method it is needed to find a magnetic circuit revision constant. In this paper a voice coil linear force motor is designed by conventional design method and analyzed by 3D simulation program "Flux". For the prototype linear force motor, the results of the calculated by conventional design method and the analyzed by 3D simulation program are compared with the test result. Finally it is showed that the magnetic circuit revision constant which is found by comparing of the analyzed and the measured data can be used for the design of the voice coil type linear force motor to minimize the trial and error.

Design and Test Results of an Actively Shielded Superconducting Magnet for Magnetic Resonance Imaging

  • Jin, Hong-Beom;Ryu, Kang-Sik;Oh, Bong-Hwan;Ryu, Kyung-Woo;Jeoun, In-Young
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.95-105
    • /
    • 1997
  • In this paper, we have studied about design and fabrication of the actively shielded superconducting MRI magnet. Nonlinear optimization methods are usually used to find optimum coil configurations. However the selection of initial coil configurations is very difficult. In case bad initial data are used, it is even impossible to find optimum coil configurations which satisfy predefined constraints. We have developed computer optimization program which consists of two steps. Initial coil configurations are easily selected through linear optimization in the first step and optimum coil configurations are found through nonlinear optimization in the second step. We have also studied about superconducting shim coils to cancel error fields caused by coil fabrication errors. Many researchers published design concepts of shim coil. However all these studies are for shim coil design using filamentary coils with single turn, Shim coils with multi-turns should be used to produce enough field strength to cancel error fields. We have developed computer program for the design of shim coils which have proper thickness and length. An actively shielded superconducting MRI magnet with a small warm bore was fabricated and four sets of superconducting shim coils were equipped. The magnetic field distributions were measured and field correction was carried out using shim coils.

  • PDF

Design and Manufacture for the 0.7MJ SMES Coil (0.7MJ SMES Coil 설계 및 제작)

  • Kim, H.J.;Seong, K.C.;Cho, J.W.;Lee, E.Y.;Ryu, K.S.;Ryu, K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.140-142
    • /
    • 1998
  • The major part of SMES (Superconducting Magnetic Energy Storage) system consist of the superconducting coil, cryostat and current lead, power converter. The 0.7MJ SMES coil was a design and manufacture by using SMES device that we developed a design code. A SMES coil was wound with high winding tension in order to prevent wire motion from Lorentz force. This paper described optimum design for the SMES coil.

  • PDF