• Title/Summary/Keyword: Colorimetric gas sensor

Search Result 6, Processing Time 0.028 seconds

Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array (비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼)

  • Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.

Highly Sensitive Colorimetric Formaldehyde Gas Sensors using Nylon Sheet and Dye (나일론 시트와 염료를 이용한 고감도 색변환 포름알데히드 가스 센서)

  • Jung, Suenghwa;Cho, Yeong Beom;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.420-426
    • /
    • 2017
  • A colorimetric sensor was investigated to achieve a low-cost warning device for harmful gaseous formaldehyde (HCHO). The sensor is based on selective reactions between hydroxylamine sulfate and HCHO, leading to the production of sulfuric acid. The produced acid results in color-changing response through the acid-base reaction with dye molecules impregnated on a solid membrane substrate. For attaining this purpose, sensors were fabricated by drop-casting a dye solution prepared using different pH indicators on various commercially available polymer sheets, and their colorimetric responses were evaluated in terms of sensitivity and reliability. The colorimetric sensor using bromophenol blue (BPB) and nylon sheet was found to exhibit the best performance in HCHO detection. An initial bluish green of a sensor was changed to yellow when exposed to gaseous formaldehyde. The color change was recorded using an office scanner and further analyzed in term of RGB distance for quantifying sensor's response at different HCHO(g) concentrations. It exhibited a recognizable colorimetric response even at 50 ppb, being lower than WHO's standard of 80 ppb. In addition, the sensor was found to have quite good selectivity in HCHO detection under the presence of common volatile organic compounds such as ethanol, toluene, and hexane.

Fabrication of High-Performance Colorimetric Fiber-Type Sensors for Hydrogen Sulfide Detection (황화수소 가스 감지를 위한 고성능 변색성 섬유형 센서의 제작 및 개발)

  • Jeong, Dong Hyuk;Maeng, Bohee;Lee, Junyeop;Cho, Sung Been;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.168-174
    • /
    • 2022
  • Hydrogen sulfide(H2S) gas is a high-risk gas that can cause suffocation or death in severe cases, depending on the concentration of exposure. Various studies to detect this gas are still in progress. In this study, we demonstrate a colorimetric sensor that can detect H2S gas using its direct color change. The proposed nanofiber sensor containing a dye material named Lead(II) acetate, which changes its color according to H2S gas reaction, is fabricated by electrospinning. The performance of this sensor is evaluated by measuring RGB changes, ΔE value, and gas selectivity. It has a ΔE value of 5.75 × 10-3 ΔE/s·ppm, showing improved sensitivity up to 1.4 times that of the existing H2S color change detection sensor, which is a result of the large surface area of the nanofibers. The selectivity for H2S gas is confirmed to be an excellent value of almost 70 %.

Propectives of Environmental Colorimetric-Sensors (환경색센서에 관한 기술 전망)

  • Kim, Younghun;Lee, Byunghwan
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.393-399
    • /
    • 2011
  • The electrochemical or optical sensors for environmental pollutants are developed over the past several years. Nowadays, the development of colorimetric sensing is particularly challenging since it requires no equipment at all as color changes can be detected by the naked eye. Visual detection can give immediate qualitative information and is becoming increasingly appreciated in terms of quantitative analysis. In addition, simple colorimetric-sensor have shown useful in the detection, identification, and quantification of volatile organic compounds(VOC) in gas phase or heavy metal ion in aqueous phase. In this review, we investigated the wide applications and some drawbacks of colorimetric-sensors. And thus, we try to suggest the methodologies of development approach of multi-functional and reversible colorimetric-sensor.

Freshness Monitoring of Raw Salmon Filet Using a Colorimetric Sensor that is Sensitive to Volatile Nitrogen Compounds (휘발성 질소화합물 감응형 색변환 센서를 활용한 연어 신선도 모니터링)

  • Kim, Jae Man;Lee, Hyeonji;Hyun, Jung-Ho;Park, Joon-Shik;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • A colorimetric paper sensor was used to detect volatile nitrogen-containing compounds emitted from spoiled salmon filets to determine their freshness. The sensing mechanism was based on acid-base reactions between acidic pH-indicating dyes and basic volatile ammonia and amines. A sensing layer was simply fabricated by drop-casting a dye solution of bromocresol green (BCG) on a polyvinylidene fluoride substrate, and its color-change response was enhanced by optimizing the amounts of additive chemicals, such as polyethylene glycol, p-toluene sulfonic acid, and graphene oxide in the dye solution. To avoid the adverse effects of water vapor, both faces of the sensing layer were enclosed by using a polyethylene terephthalate film and a gas-permeable microporous polytetrafluoroethylene sheet, respectively. When exposed to basic gas analytes, the paper-like sensor distinctly exhibited a color change from initially yellow, then to green, and finally to blue due to the deprotonation of BCG via the Brønsted acid-base reaction. The use of ammonia analyte as a test gas confirmed that the sensing performance of the optimized sensor was reversible and excellent (detection time of < 15 min, sensitive naked-eye detection at 0.25 ppm, good selectivity to common volatile organic gases, and good stability against thermal stress). Finally, the coloration intensity of the sensor was quantified as a function of the storage time of the salmon filet at 28℃ to evaluate its usefulness in monitoring of the food freshness with the measurement of the total viable count (TVC) of microorganisms in the food. The TVC value increased from 3.2 × 105 to 3.1 × 109 cfu/g in 28 h and then became stable, whereas the sensor response abruptly changed in the first 8 h and slightly increased thereafter. This result suggests that the colorimetric response could be used as an indicator for evaluating the degree of decay of salmon induced by microorganisms.

Polyester (PET) Fabric dyed with Lead (II) acetate-based Colorimetric Sensor for Detecting Hydrogen Sulfide (H2S) (황화수소(H2S) 감지를 위한 아세트산 납이 침염된 폴리에스터(PET) 섬유 기반의 변색성 센서)

  • Lee, Junyeop;Do, Nam Gon;Jeong, Dong Hyuk;Jung, Dong Geon;An, Hee Kyung;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.360-364
    • /
    • 2020
  • In this study, the colorimetric sensor, polyester (PET) fabric dyed with lead (II) acetate (Pb(C2H3O2)2), was fabricated and characterized for the detection of the hydrogen sulfide (H2S). The surface morphology of the fabric was determined using scanning electron microscope and energy-dispersive X-ray spectroscopy. The optical properties of the fabric were evaluated by measuring the variation in the blue value of an RGB sensor. The fabric showed a significant color change, high linearity (R2 : 0.98256), and fast response time (< 1.0 s) when exposed to H2S. This is because the sensor is highly porous and permeable to the gas. The fabric can not only be used as a hydrogen sulfide sensor but also be used to detect and prevent H2S influx using sticky tape on pipelines.