• Title/Summary/Keyword: Combustion Performance

Search Result 1,641, Processing Time 0.026 seconds

Numerical Analyses of Performance and Combustion in KSR-III Liquid Propellant Rocket Engine with Combustion Stabilization Device (연소 안정성 기구를 장착한 KSR-III 액체로켓 엔진의 성능 및 연소 해석)

  • Moon, Yoon-Wan
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.41-50
    • /
    • 2003
  • Numerical analysis was carried out to investigate performance and combustion characteristics of KSR-III liquid rocket engine with several types of baffle. To evaluate the change of performance and combustion characteristics with several types of baffle, the first numerical calculations were performed about baffle tab, radial blade baffle, and hub-and-spoke baffle. Then radial blade and hub-and-spoke baffle were determined to design two types of the KSR-III engine with baffles. Also to investigate the effect of injector arrangements and baffle positions, two types of radial blade baffle were calculated then numerical calculations were carried out with changing axial length of radial blade I, II and hub-and-spoke baffle. While axial length of baffle effected to performance very small, injector arrangement effected to performance largely through calculations of radial blade I, II. From the viewpoint of combustion instability, hub-and-spoke baffle controlled combustion instability effectively and there was the performance of hub-and-spoke baffle between radial blade I and II.

  • PDF

Influence of Operating Conditions on the Performance of a Oxy-fuel Combustion Reference Cycle (순산소 연소 기본 사이클의 작동조건 변화에 따른 성능해석)

  • Park, Byung-Chul;Sohn, Jeong-Lak;Kim, Tong-Seop;Ahn, Kook-Young;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2971-2976
    • /
    • 2008
  • Recently, there has been growing interest in the oxyfuel combustion cycle since it enables high-purity CO2 capture with high efficiency. However, the oxyfuel combustion cycle has some important issues regarding to its performance such as the requirement of water recirculation to decrease a turbine inlet temperature and proper combustion pressure to enhance cycle efficiency. The purpose of the present study is to analyze performance characteristics of the oxyfuel combustion cycle with different turbine inlet temperatures and combustion pressures. It is expected that the turbine inlet temperature improves cycle efficiency, on the other hand, the combustion pressure has specific value to display highest cycle efficiency.

  • PDF

Investigation on the Prediction Performance of the Chemical Kinetics for the Numerical Simulation of MILD Combustion (마일드 연소장 수치계산을 위한 화학반응기구의 예측성능 검토)

  • Kim, Yu Jeong;Oh, Chang Bo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.341-344
    • /
    • 2012
  • The prediction performance of the chemical kinetics for the numerical simulation of MILD combustion was investigated. A wall-confined turbulent methane jet combustor was adopted as a configuration. Four chemical kinetics, such as a global 3-step, WD4, Skeletal, and DRM-19, were investigated, The air stream of the wall-confined MILD jet combustor was diluted with combustion products. It was found that the DRM-19 was optimal for the numerical simulation of the MILD combustion.

  • PDF

Performance Prediction of Combustion Chamber for 75 ton LRE through Firing Tests at Low Pressure (75톤급 액체로켓엔진 연소기 저압시험을 통한 연소성능 예측)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.66-70
    • /
    • 2010
  • The performance of 75 ton liquid rocket engine combustion chamber for a space launch vehicle was predicted through firing tests at low pressure. In low pressure tests of 75 ton LRE combustor chamber, the combustion characteristic velocity of 1750 m/sec and the specific impulse of 240 sec were obtained which are higher than the low pressure performance of 30ton combustion chamber. The combustion characteristic velocity of 1770 m/sec and the specific impulse of 278 sec at design point for 75 ton LRE combustion chamber were predicted by using the low/high pressure performance correlation of 30ton LRE combustion chamber.

  • PDF

Performance Analysis Method for Dual Combustion Ramjet Engines (이중연소 램제트엔진의 성능해석 기법)

  • Seo, Bong-Gyun;Yeom, Hyo-Won;Sung, Hong-Gye;Gil, Hyun-Yong;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.326-330
    • /
    • 2011
  • Development and validation of performance analysis model for dual combustion ramjet engines has been performed. A typical performance model for hypersonic intake flow and supersonic mixing and combustion was demonstrated; Taylor-Maccoll equation for coaxial intakes and a quasi-one dimensional reacting flow analysis with CEA chemical equilibrium for supersonic combustion. The results, thermodynamic data of intake and supersonic combustor were validated with CFD numerical results.

  • PDF

Mathematical and Experimental Study for Mixed Energetic Materials Combustion in Closed System

  • Kong, Tae Yeon;Ryu, Byungtae;Ahn, Gilhwan;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.267-276
    • /
    • 2022
  • Modelling the energy release performance of energetic material combustion in closed systems is of fundamental importance for aerospace and defense application. In particular, to compensate for the disadvantage of the combustion of single energetic material and maximize the benefits, a method of combusting the mixed energetic materials is used. However, since complicated heat transfer occurs when the energetic material is combusted, it is difficult to theoretically predict the combustion performance. Here, we suggest a theoretical model to estimate the energy release performance of mixed energetic material based on the model for the combustion performance of single energetic material. To confirm the effect of parameters on the model, and to gain insights into the combustion characteristics of the energetic material, we studied parameter analysis on the reaction temperature and the characteristic time scales of energy generation and loss. To validate the model, model predictions for mixed energetic materials are compared to experimental results depending on the amount and type of energetic material. The comparison showed little difference in maximum pressure and the reliability of the model was validated. Finally, we hope that the suggested model can predict the energy release performance of single or mixed energetic material for various types of materials, as well as the energetic materials used for validation.

GE7EA Gas Turbine Combustion Performance Test of DME and Methane (DME와 메탄의 GE7EA 모사가스터빈 연소성능시험)

  • Lee, Min-Chul;Seo, Seok-Bin;Chung, Jae-Hwa;Joo, Youg-Jin;Ahn, Dal-Hong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3270-3275
    • /
    • 2007
  • DME (Dimethyl Ether, $CH_3OCH_3$) has highly attracted attention as an alternative fuel for transportation, power generation and LPG substitute owing to its easy transportation and cleanliness. This study was conducted to verify the combustion performance and to identify potential problems when DME is fuelled to a gas turbine. GE7EA gas turbine of Pyong-Tak power plant was selected as a target to apply the DME. Combustion tests were conducted by comparing DME with methane, which is a major component of natural gas, in terms of combustion instability, $NO_X$ and CO emissions, and the outlet temperature of the combustion chamber. The results of the performance tests show that DME is very clean but has a low combustion efficiency in low load condition. From the results of the fuel nozzle temperature we have ascertained that DME is easy to flash back, and this property should be considered when operating a gas turbine and retrofitting a burner.

  • PDF

Influence of Operating Conditions on the Performance of a Oxy-fuel Combustion Reference Cycle (순산소 연소 기본 사이클의 작동조건 변화에 따른 성능해석)

  • Park, Byung-Chul;Sohn, Jeong-Lak;Kim, Tong-Seop;Ahn, Kook-Young;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.30-36
    • /
    • 2009
  • Recently, there has been growing interest in the oxyfuel combustion cycle since it enables high-purity $CO_2 capture with high$ efficiency. However, the oxyfuel combustion cycle has some important issues regarding to its performance such as the requirement of water recirculation to decrease a turbine inlet temperature and proper combustion to enhance cycle efficiency. Also, Some of water vapour remain not condensed at condenser outlet because cycle working fluid contains non-condensable gas, i.e., $CO_2$. The purpose of the present study is to analyze performance characteristics of the oxyfuel combustion cycle with different turbine inlet temperatures, combustion pressures and condenser pressure. It is expected that increasing the turbine inlet temperature improves cycle efficiency, on the other hand, the combustion pressure has specific value to display highest cycle efficiency. And increasing condensing pressure improves water vapour condensing rate.

Analysis of Performance and Combustion Characteristics in KSR-III Liquid Rocket Engine with Combustion Instability Passive Control Device(Baffle) (연소 불안정 수동제어 기구(배플)를 장착한 KSR-III 액체 로켓엔진의 성능 및 연소특성 해석)

  • 문윤완;류철성;설우석;김영목;이수용
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.63-72
    • /
    • 2003
  • The combustion characteristics of the KSR-III engine were investigated numerically from the viewpoint of performance and combustion field. For numerical analysis of KSR-III engine with hub-and-spoke baffle, 3-D calculation was performed about $30^{\cire}$ section and the prediction of performance was in a good agreement with hot-firing test result. As a result of baffle installed, the performance of KSR-III engine was reduced in comparison with no baffle case and local high temperature region appeared on injector plate, combustion wall and baffle wall, This calculation was used practically as basic data for designing injector plate with film cooling holes and predicting the performance of KSR-III final flight test.

Rotary Kiln Flame and Heat Transfer Model - Analysis of Thermal Performance according to Fuel (로터리킬른 화염 및 열전달 모형 - 연료에 따른 열 성능 분석 사례)

  • Choi, Donghwan;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • This paper is to suggest a simple flame model for the analysis of an internal flame of rotary kilns and to present the application cases. Reaction rates in the multi combustion stages of the selected solid fuel were calculated considering the reaction rates with the Arrhenius type equations. In addition, primary and secondary air flow arrangement were considered. As a simple application case, the combustion trends according to the different solid fuels were described. Improved operating conditions as related with the fuel characteristics were shown to be important for the stable combustion characteristics and the performance of the reactors as defined by the exit temperature of the solid materials.