• Title/Summary/Keyword: Combustion efficiencies

Search Result 81, Processing Time 0.025 seconds

Combustion Characteristics of E.V.A., Rubber Waste Treatment by Fixed-Bed Incinerator. (E.V.A., 고무폐기물 소각에 따른 폐가스 처리의 연구)

  • Bae, Byung-Hoon;Jang, Seong-Ho;Lim, Gyoung-Teck
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.221-227
    • /
    • 1996
  • The objectives of this study are to examine combustion characteristics of E.V.A. and rubber wastes by fixed-bed incinerator, The results are as follows. Combustion temperature with time rises rapidly, and mass of E.V.A. reduces at short time in E.V.A. combustion. In variation of air-fuel ratio (m), ice ideal values of m of E.V.A. and rubber are 2.5, 1.5 respectively. Mixed-waste combustion is more economic than single E.V.A. combustion, because we can get high combustion efficiency (94.0~99.0%) at 2.0 air-fuel ratio of mixed-waste combustion. Removal efficiencies of SO2 at cooling tower are about 20%. The combustion efficiencies of rubber are over 98.0% according to the experimental conditions.

  • PDF

Combustion Efficiency of Boron Carbide Fuel Solid Fuel Ramjet

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.722-725
    • /
    • 2004
  • An experimental investigation was conducted to investigate the effects of the equivalence ratio and air mass flux on the combustion efficiency in a solid fuel ramjet used fuel grains which were highly loaded with boron carbide. Combustion efficiency increased with increasing equivalence ratio (grain length), and decreasing air mass flux. Higher inlet air temperature produced higher combustion efficiencies, apparently the result of enhanced combustion of the larger boron particles those bum in a diffusion controlled regime. Short grains which considered primarily of the recirculation region produced larger particles and lower combustion efficiencies. The result of the normalized combustion efficiency increased with inlet air temperature, is coincident with the result of the Brayton cycle thermal and the total efficiency relating to the heat input.

  • PDF

Analysis of Propane and Butane Combustion in a Spark-Ignition Engine under Different Compression Ratio (스파크점화 엔진에서 압축비에 따른 프로판과 부탄의 연소 분석)

  • Hyunwook, Park;Junsun, Lee;Seungmook, Oh;Changup, Kim;Yonggyu, Lee;Kernyong, Kang
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.203-210
    • /
    • 2022
  • Combustion and performance of a spark-ignition engine fueled with propane and butane were analyzed under different compression ratio. The electricity efficiencies of propane and butane increased with increasing the electricity production. The heat release rates of propane and butane were similar at a compression ratio of 9:1 because both fuels had similar optimal ignition timings without knocking combustion. Therefore, the difference in electricity efficiencies of engine generators was insignificant. However, at a higher compression ratio of 11:1, the butane engine generator had a lower electricity efficiency than the propane engine generator because its ignition timing retarded to suppress the knocking combustion.

Combustion and Performance Efficiency of Boron Carbide Fuel in Solid Fuel Ramjet (고체 램제트 추진기관에서 보론 카바이드 연료의 연소, 성능 특성)

  • Lee, Tae-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 2004
  • An experimental investigation was conducted to investigate the effects of the equivalence ratio and air mass flux on the combustion efficiency in a solid fuel ramjet used fuel grains which were highly loaded with boron carbide. Combustion efficiency increased with increasing equivalence ratio (grain length), and decreasing air mass flux. Higher inlet air temperature produced higher combustion efficiencies, apparently the result of enhanced combustion of the larger boron particles those burn in a diffusion controlled regime. Short grains which considered primarily of the recirculation region produced larger particles and lower combustion efficiencies. The result of the normalized combustion efficiency increased with inlet air temperatures coincident with the result of the Brayton cycle thermal and the total efficiency relating to the heat input.

Fuel stratification by multiple injection in DME HCCI engine combustion (DME 예혼합 압축착화 엔진에서 다단분사를 통한 연료 성층화)

  • Yoon, Hyeonsook;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.311-312
    • /
    • 2012
  • Homogeneous charge compression ignition combustion with multiple-injection strategy using dimethyl-ether was investigated in a single cylinder direct-injection compression-ignition engine. The combustion performance and exhaust emissions were tested by varying the post injection conditions. The experiments were carried out under low load and low speed conditions. By the late post injection near the top dead center, the combustion phase was retarded and lengthened, and the fuel conversion efficiencies improved without the drawbacks of exhaust emissions increment.

  • PDF

Flame image precise measurement and flame control to raise combustion efficiencies of a blast furnace (고로의 연소효율을 높이기 위한 화염영상 정밀 검출 및 화염제어)

  • Kim, Jae-Yeol;Lee, Seung-Chul;Kwak, Nam-Su;Han, Jae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.8-14
    • /
    • 2014
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) was developed for iron making. The combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational conditions are numerically predicted to determine the performance levels with regard to different locations of the nozzles in a blast furnace. A variety of parameters, including the pulverized coal quantities, oxygen amounts, inlet temperatures of the tuyeres, and the mass flow rate of coal carrier gas are taken into consideration. Also, in order to develop greater efficiency than those of existing coal injection systems, this study applies a flame measurement system using a charge-coupled device (CCD) camera and a frame grabber. It uses auto sampling algorithms from the flame shape information to determine the device for the optimal location control for PCI. This study finds further improvements of the blast furnace performance via the control of the PCI locations.

Pulverized coal injection system development to raise combustion efficiencies of a blast furnace (고로의 연소효율을 높이기 위한 미분탄 공급 시스템 개발)

  • An, Young-Jin;Kang, Pub-Sung;Kwak, Na-Soo;Choi, Gyung-Min;Lee, Min-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3163-3168
    • /
    • 2008
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) system was developed for iron making. Combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational are numerically predicted to recognize the performance with the locations of nozzles in a blast furnace. A variety of parameters including the pulverized coal quantities, oxygen amounts, inlet temperature of the tuyeres and mass flow rate of coal carrier gas are taken into consideration. Also In order to develop more efficient than existing coal injection system, this study applies a flame measurement system using a charge couple device (CCD) camera and frame grabber. And it has used algorithms of auto sampling from flame shape information and composed the device for location control of PCI. This study find to further improve the blast furnace performance by the control of PCI locations.

  • PDF

Comparative Study of Powertrain Loss and Efficiency for the Electric Vehicle and Internal Combustion Engine Vehicle (전기차와 내연기관차의 파워트레인 손실 및 효율 비교)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.29-35
    • /
    • 2019
  • In this paper, the component loss models of the electric vehicle(EV) and the internal combustion engine vehicle(ICEV) are developed to analyze the losses and efficiencies of these two types of vehicles. The EV powertrain efficiency decreases as the vehicle velocity increases over most of the vehicle velocity range because the battery efficiency decreases. Especially, the EV powertrain efficiency decreases significantly when the battery SOC is low. But the ICEV powertrain efficiency increases as the vehicle velocity increases. This is because the efficiencies of both the transmission and engine increases.

Development of the Small Wastes Incinerator with High Combustion Efficiency (연소효율이 우수한 소형 소각로의 개발)

  • 한돈희;하대성
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.81-85
    • /
    • 2000
  • In order to reduce emission of air pollutants from spot incineration, it is required to develope the combustion chamber of small wastes incinerator having combustion efficiency. The characteristics of combustion of the incinerator with combustion chamber having tangential angels with surface of 45$^{\circ}$of air supply nozzles were studied in accordance with non-grate, fixed-grate and shaking-grate in the combustion chamber. Combustion conditions were evaluated with combustion efficiency, emission of hazardous gases, temperatures, ignition loss of ash and so on. Combustion efficiencies were shown 73.9% for non-gate, 81.1% for fixed-grate and 89.0% for shaking-grate. Emissions of CO were revealed 6.52 ppm for non-grate, 273 ppm for fixed-grate and 224 for shaking-grate. Comprehensively evaluated, combustion conditions got better in order of shaking-grate, fixed-grate and non-grate. This study suggests that small wastes incinerator should have shaking-or fixed-grate in combustion chamber to get better combustion condition even though at expensive cost of manufacturing.

  • PDF

Effect of Combustion Chamber Pressure to Specific Impulse of Liquid Rocket Engine (액체로켓엔진에서 연소압이 비추력에 미치는 영향)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3154-3158
    • /
    • 2008
  • A liquid rocket engine performance has been analyzed as a function of combustion pressure with LOx/RP-1R. The present method is verified by comparing the specific impulse for various combustion pressure with given pump head model. The optimal combustion pressure is between 150 bar and 200 bar for given efficiencies. Both the optimal combustion pressure and the specific impulse increase for increased turbine efficiency. The optimal combustion pressure decreases and the specific impulse increases for increased combustion efficiency. The pump efficiency and the turbine inlet temperature have the same qualitative effect as the turbine efficiency.

  • PDF