• 제목/요약/키워드: Combustion stabilization technique

검색결과 7건 처리시간 0.023초

리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석 (Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System)

  • 이제홍;김강문;정대용;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

연료의 열분해특성과 비예혼합 제트화염의 부상특성에 관한 기초실험 (Basic Experimental Study on Characteristics of Fuel Pyrolysis and Lift-off of Non-premixed Jet-flame)

  • 전민규;이민정;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.119-121
    • /
    • 2014
  • In general, high temperature combustion technique has been adopted as an efficient one. However, hydrocarbon-based fuel can be decomposed under high temperature, and it can affect the stabilization mechanism of edge flame. In this research, basic experimental study was conducted to identify the effect of fuel pyrolysis on the lift-off flame stabilization by changing the temperature of the plug flow reactor. Schmidt number of the gas fuel can be changed with temperature variation due to the fuel pyrolysis. Eventually, this study will help to establish and clarify the stabilization mechanism of lift-off edge flame.

  • PDF

수소 난류확산화염에서의 부상 메커니즘에 대한 연구 (Liftoff mechanisms in hydrogen turbulent non-premixed jet flames)

  • 오정석;김문기;최영일;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF

수소 난류확산화염에서의 부상 메커니즘에 대한 연구 (Liftoff Mechanisms in Hydrogen Turbulent Non-premixed Jet Flames)

  • 오정석;김문기;최영일;윤영빈
    • 한국연소학회지
    • /
    • 제12권2호
    • /
    • pp.26-33
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs at the point where the local flow velocity is balanced with the turbulent flame propagation velocity.

  • PDF

한국형발사체 성능 고도화 핵심기술 검증을 위한 고압 축소형 연소기 개발 (Development of High-Pressure Subscale Thrust Chamber for Verifying Core Technology for KSLV-II Performance Enhancement)

  • 김종규;김성구;조미옥;유철성
    • 한국추진공학회지
    • /
    • 제25권4호
    • /
    • pp.19-27
    • /
    • 2021
  • 한국형발사체용 연소기 성능 고도화를 위한 핵심기술을 검증하기 위해 고압 축소형 연소기를 개발하였다. 성능 고도화를 위한 핵심기술은 고압 연소기용 분사기 설계, 적층제조기법을 적용한 연소안정화 장치 개발, 고압 축소형 연소기 헤드 및 재생냉각 연소실 설계/제작 등이다. 고압 축소형 연소기 개발을 통해 핵심기술을 검증하였고, 이 기술들은 향후 대형 액체로켓엔진 연소기 개발에 활용될 예정이다.

수소 난류확산화염에서의 부상 메커니즘에 대한 연구 (Investigation of liftoff mechanisms in hydrogen turbulent non-premixed jet flames)

  • 오정석;김문기;최영일;윤영빈
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.135-140
    • /
    • 2006
  • The stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition has been studied experimentally. The objectives are to explain the phenomenon of a liftoff height decreasing as increasing fuel velocity and to reveal the mechanisms of flame stability Hydrogen was varied from 100 to 300 m/s and a coaxial air was fixed at 16 m/s with a coflow air less than 0.1 m/s. The technique of PIV and OH PLIF was used simultaneously with CCD and ICCD cameras. It was found that the liftoff height of the jet decreased with an increased fuel jet exit velocity. The leading edge at the flame base was moving along the stoichiometric line. Finally we confirmed that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means combustion is occurred where the local flow velocity is equal to the turbulent flame propagation velocity.

  • PDF

KSR-III 추진기관 공급계 개발 (Development of KSR-III Propulsion Feeding System)

  • 이대성;조인현;정태규;강선일;김용욱;정영석;권오성;정동호;오승협
    • 한국추진공학회지
    • /
    • 제6권4호
    • /
    • pp.37-45
    • /
    • 2002
  • The development process of KSR-III propulsion feeding system is subscripted. The purpose of propulsion feeding system is to feed a certain amount of propellant from propellant tank to engine by the end of combustion. Pressure-fed liquid rocket, KSR-III has the unique characteristics of both pressure regulator and cavitation venturi as a passive flow control device. Main parameters of feeding system are confirmed by both water test and CFD(전산유체) technique. Flow control effect with venturi is confirmed by water test. Initial stabilization characteristic of pressure regulator is confirmed by real propellant test. And, to avoid the effect of resonance between rocket and feeding system, this article deal with POGO(포고) analysis to the feeding system.