• Title/Summary/Keyword: Comfort setting temperature

Search Result 12, Processing Time 0.024 seconds

Smart Thermostat based on Machine Learning and Rule Engine

  • Tran, Quoc Bao Huy;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.155-165
    • /
    • 2020
  • In this paper, we propose a smart thermostat temperature set-point control method based on machine learning and rule engine, which controls thermostat's temperature set-point so that it can achieve energy savings as much as possible without sacrifice of occupants' comfort while users' preference usage pattern is respected. First, the proposed method periodically mines data about how user likes for heating (winter)/cooling (summer) his or her home by learning his or her usage pattern of setting temperature set-point of the thermostat during the past several weeks. Then, from this learning, the proposed method establishes a weekly schedule about temperature setting. Next, by referring to thermal comfort chart by ASHRAE, it makes rules about how to adjust temperature set-points as much as low (winter) or high (summer) while the newly adjusted temperature set-point satisfies thermal comfort zone for predicted humidity. In order to make rules work on time or events, we adopt rule engine so that it can achieve energy savings properly without sacrifice of occupants' comfort. Through experiments, it is shown that the proposed smart thermostat temperature set-point control method can achieve better energy savings while keeping human comfort compared to other conventional thermostat.

A Study on Estimating Reduction of Heating Energy and CO2 by Indoor Setting Temperature with Clo (착의량별 실내설정온도에 따른 난방에너지 및 온실가스 저감량 산정 연구)

  • Yoon, Jong-Ho;Lee, Chul-Sung;Kim, Hyo-Jung;Park, Jae-Wan;Shin, U-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.115-120
    • /
    • 2009
  • The studies for mechanical performance development have been examined to reduce energy consumption in building construction field. However, The energy consumption using in building for heating is impacted by not only system performance but also PMV particularly at temperature and clo. Most energy using in building part is mainly consumed for heating and cooling to keep comfort temperature. Heating energy consumption is bigger than cooling energy in Korea because of temperature difference in winter in comparison with summer at apartment building. This means that energy consumption can be changed by occupancy's comfort setting temperature in apartment building. This study evaluate actual comfort temperature range by clo and examined heating energy consumption by Esp-r and CO2 reduction possibility. The results show that keeping ASHRAE standards can reduce heating energy up to 23%; also, wearing underclothes with ASHRAE standard can reduce heating energy up to 47.8%. Option 4 showing Maximum CO2 emission reduction indicates that kerosene. LNG and electricity can reduce 1.5t, 1.7t, 2.46t respectively in comparison with option 2.

  • PDF

A Study on the Estimation of Heating Energy and CO2 Reduction depending on a Indoor Set Temperature and Clo value (착의량과 실내설정온도 관계에 따른 난방에너지 및 온실가스저감량 평가 연구)

  • Lee, Chul-Sung;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.49-54
    • /
    • 2010
  • Most energy using in building part is mainly consumed for heating and cooling to meet occupancy's comfort temperature. Generally, heating energy consumption show high value than cooling energy in Korea because of high temperature difference in winter season as compared with summer in apartment building. The efforts to develope mechanical performance have been studied to reduce energy consumption in building energy field until now. However, the energy consumption in building is impacted by not only system performance but also PMV particularly at temperature and Clo value. This means that energy consumption can be changed by occupancy's comfort setting temperature in apartment building. This study investigated the passibility of overheating in apartment building by occupant' slow Clo and its setting temperature from preceding research and then the heating energy consumption by setting temperature was calculated with ESP-r. The effects of heating energy and $CO_2$ reduction are also evaluated quantitatively with Clo value. The results showed that keeping ISO-7730 standards can reduce heating energy up to 21% in compared with option 2; also, wearing underclothes with ISO-7730 standard can considerably reduce heating energy consumption up to 50%. As compared with option 2, the reduction of $CO_2$ emission for option 3 showed 0.63TCO2 of kerosene, 0.49TCO2 of LNG and 1.09TCO2 of electricity. The option 4 can be reduced by 1.48TCO2 of kerosene, 1.16TCO2 of LNG and 2.57TCO2 of electricity respectively.

The Effects of Illuminance and Correlated Color Temperature on Visual Comfort of Occupants' Behavior

  • Yoon, Gyu Hyon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The preferred illumination environment in accordance with the actions taken by the occupants of the rooms in residences differs significantly between different cultures and circumstances in and out of the country. In this regard, the purpose of this study is to evaluate the visual performance of various illumination environments in residential spaces by allowing the participants of the experiments to select the kind of illumination environment they prefer as the occupants of the room. For this purpose, we prepared a mock-up residential space of $6.2m{\times}4.5m{\times}2.5m$, where the experiments for this study were conducted. Then, three illuminance settings (30lx, 100lx, and 150lx) and three color temperature settings (2700k, 4000k, and 6500k) were selected as the properties of the physical environment where the tests were to be conducted. The survey was conducted with 30 study subjects, with whom the level of visual comfort and the lighting adjustment evaluation by different activities were carried out. The level of visual comfort in lighting in a residential context turned to be more influenced by the color temperature and illuminance compared to other factors. Except for the test item, 'comfort,' all test items showed positive reactions when the illuminance was 150lx, which was rather light. In 'comfort,' the test subjects appeared to prefer warm color temperature of 2700k. As we allowed the occupants to adjust the lighting environment in accordance with the conditions of the subjects and the activities they performed, the subjects regarded 150lx - 4000k setting as comfortable, while they preferred 150lx-5400k configuration for working. In case of resting, the subject answered that the configuration of 30lx -2700k setting to be visually comfortable.

Basic Study on Creating Ecological Residence Space - A thermal environment study of the aged - (생태 공간 조성에 관한 기초 연구 -고령자를 대상으로 한 열환경 연구-)

  • Kim, Dong-Gyu;Ha, Byeong-Yong;Kum, Jong-Soo;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.2
    • /
    • pp.153-161
    • /
    • 2011
  • Creating standards on thermal environment has been organized traditionally based on the youth and the manhood who are in mainly active layer of a society. However, traditional creating standards have differences from the physiology of the aged who have weak physical ability than younger person. As a result, it causes a health problem of the aged. Therefore, In this study, we had a basic study to create a comfortable thermal environment which had considered to a physical ability and a physiology of the aged, and build a ecological residence space to maintain health. We had several experiments with the aged; Experiment, Comfort Sensation Vote, Mean Skin Temperature and Analyzing HRV. The result have following by: 1)For the aged, the summer recommend temperature, $26^{\circ}C$, is appropriate within first 30 ~ 40 minutes, but it should be increasing the temperature after that time. 2) By considering PMV status and thermal feeling of the aged, they are prefer to higher temperature than normal setting of air-condition system. 3) In the condition of the summer recommend temperature, $26^{\circ}C$, they had answered in neutral or comfort with the comfort sensation vote. However, we had figure out that they had stress in a lower temperature by analyzing the result of HRV.

Adjustment of Valve Opening in Ondol Hot Water Distributor (온돌 난방분배기의 개도조정)

  • Hong, Hi-Ki;Kim, Si-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.460-467
    • /
    • 2010
  • In housing units constructed recently in Korea, the length of ondol coil is different in each room, so the flow rate of hot water is adjusted by setting valve opening. If the flow rate is not appropriate for heating load, the room temperature seriously deviates from the set temperature range for comfort. In particular, too small valve opening can induce a noise by cavitation. In order to adjust the valve opening, two methods by zone area and a new method by return temperature rise were modelled and simulated using TRNSYS and EES. As a result, heating energy consumption during one week was the same on three methods, but the room temperature of the new method minimally deviated from the range of set temperature with a low possibility of noise.

Suitability of Setting Summer Indoor Temperature for Thermal Comfort (여름철 실내 쾌적온도 설정 기준의 적합성)

  • Shim, Huen Sup;Jeong, Woon Seon
    • The Korean Journal of Community Living Science
    • /
    • v.24 no.4
    • /
    • pp.583-589
    • /
    • 2013
  • This study was to provide the information for optimum utilization of the air-conditioning system in the human health and energy saving perspective. Subjects were 17 male and female college students(7 males and 10 females) with normal weight. They wore a short sleeved shirt, knee length trousers, socks, and underwear(0.4clo). They were asked to choose the preferred temperature from different environmental temperatures($28^{\circ}C$, $25^{\circ}C$). The physiological responses were measured and the subjective sensation was voted during the step changes of environmental temperature, starting at $28^{\circ}C$ to $25^{\circ}C$ with $1^{\circ}C$ decrease every 20 minutes. The preferred temperature was $25.9{\pm}0.4^{\circ}C$ for males and $26.9{\pm}0.2^{\circ}C$ for females at $28^{\circ}C$ and $24.8{\pm}0.6^{\circ}C$ for males and $25.6{\pm}0.1^{\circ}C$ for females at $25^{\circ}C$. The preferred temperature decreased about $1.3^{\circ}C$ while the environmental temperature changed $3^{\circ}C$. During the environmental step changes, mean skin temperature decreased more in females while the oxygen uptake and rectal temperature were kept constant for both males and females. We found the preferred temperature was affected by the exposed temperature and the thermal sensation in the condition. Subjects preferred a lower environmental temperature when they were exposed to a lower temperature with cooler sensation. Therefore, in the perspective of human health and energy saving, it is recommended to start setting the air-conditioning temperature higher than the preferred temperature.

Development of a Novel Air-Conditioning Method for Energy Savings in Commercial Building Under Time of Use Electricity Pricing (계시별 전기 요금제하의 에너지 절약을 위한 건물 냉방 제어 방법의 개발)

  • Noh, Sung-Jun;Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.164-170
    • /
    • 2013
  • The commercial buildings are consuming about 30% of total energy used in Korea. And a large amount of energy consumption in commercial buildings is consumed by HVAC(Heating, Ventilation, Air Conditioning) system. Therefore, if we can reduce the energy consumption in HVAC or air-conditioning system in commercial buildings, the overall energy consumption in Korea can be reduced. Currently, an electricity charge called Time of Use (TOU) is applied to typical commercial buildings. This paper proposes the novel energy management method where the temperature setting of air-conditioning system are adjusted to minimize the use of electrical energy while indoor comfort level is retained. The simulation test for a typical commercial building shows that the proposed method gives over 10% savings in electricity bills and electricity consumption compared to the conventional air-conditioning method.

A Way for Creating Human Bioclimatic Maps using Human Thermal Sensation (Comfort) and Applying the Maps to Urban and Landscape Planning and Design (인간 열환경 지수를 이용한 생기후지도 작성 및 도시·조경계획 및 디자인에의 적용방안)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.21-33
    • /
    • 2013
  • The purpose of this study is to find applicabilities of human bioclimatic maps, using human thermal sensation(comfort) in summer, with microclimatic in situ data and computer simulation results at the study site of downtown Daegu. This includes the central business district(CBD) area and two urban parks, the Debt Redemption Movement Memorial Park and the 2.28 Park, for urban and landscape planning and design. Climatic data and urban setting information for the analysis of human thermal sensation were obtained from in situ measurement and the geographic information system data. As a result, the CBD had higher air temperature than the parks when the wind speed was low. Relative humidities were opposite to the air temperature. Especially, same directional streets with local wind direction had lower air temperature than streets perpendicular to the wind direction. The most important climatic variable of human thermal sensation in summer was direct beam solar radiation. Also, creating shadow areas would be the most relevant method for modifying hot thermal environments in urban areas. The most effective method of creating shadow patterns was making a tree shadow over a pergola, and the second best one was making a tree shadow on the front of north directional building walls. Moreover, how to plant trees for creating shadow patterns was important as well as what kind of trees should be planted. The results of human thermal sensation were warm to very hot at sunny areas and neutral to warm at shaded ones. At the sunny areas, wide, squared shape areas had a little bit higher thermal sensation than those of narrow streets. The albedo change of building walls 0.15 and ground surface 0.1 could change 1/6 of a sensation level at the shaded areas and 1/3 at the sunny ones. These microclimatic approaches will be useful to find appropriate methods for modifying thermal environments in urban areas.

A Study on Winter Season Measurement Results to cope with Dynamic Pricing for the VRF System

  • Kim, Hwan-yong;Kim, Min-seok;Lee, Je-hyeon;Song, Young-hak
    • Architectural research
    • /
    • v.17 no.3
    • /
    • pp.109-115
    • /
    • 2015
  • The dynamic pricing of electricity, where the electricity rate increases in a time zone with a high demand for electricity is typically applied to a building whose power reception capacity is greater than a certain size. This includes the time of use(TOU) electricity pricing in Korea which can induce the effect of reducing the power demand of a building. Meanwhile, a VRF (Variable Refrigerant Flow) system that uses electricity is regarded as one of the typical heating and cooling systems along with central air conditioning (central HVAC) for its easy operation and application to the building. Thus, to reduce power energy and operating costs of a building in which the TOU and VRF systems are applied simultaneously, we suggested a control for changing the indoor temperature setting within the thermal comfort range or limiting the rotational speed of an inverter compressor. In this study, to describe the features of the above-mentioned control and verify its effects, we evaluated the results obtained from the analysis of its operation data. Through the actual measurements in winter operations for 73 days since mid- December 2014, we confirmed a reduction of 10.9% in power energy consumption and 12.2% in operating costs by the new control. Also, a reduction of 13.3% in power energy consumption was identified through a regression analysis.