• Title/Summary/Keyword: Compact Heat Exchanger

Search Result 78, Processing Time 0.033 seconds

Design Evaluation of Heavy Duty Heat Exchangers for Compact Steam Boilers (밀집형 증기보일러의 고부하 열교환기 설계평가)

  • Kim, Sungil;Yang, Jongin;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.23-31
    • /
    • 2013
  • Compact steam boiler is a useful heat exchanger in a space-intensive system. There are some constraints in terms of sizing and designing the space confined in the system which is usually used in vessels. In this study, design considerations for heavy duty heat exchangers of compact steam boilers are presented and evaluated. Especially, evaporator tubes of marine boiler which are exposed to a high temperature environment are considered. Also, extended surface designs with a high temperature are examined. In order to determine the criteria with considerations of both heat transfer rate and pressure drop in the heat exchanger, they are evaluated with major variables, such as the tube diameter, the number of tubes, and the tube length. Finally, the design parameters are estimated as the bare tubes are installed instead of the finned tubes.

A Study on the Optimum Design of Plate-Fin Compact Sensible Heat Exchanger for the Heat Recovery of Exhaust Gas (배기열(排氣熱) 회수용(回收用) 평판(平板) - 휜형(形) 밀집형(密集形) 현열(顯熱) 열교환기(熱交換器)의 최적설계(最適設計)에 관한 연구(硏究))

  • Choi, Y.D.;Park, S.D.;Woo, J.S.;Tae, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.85-98
    • /
    • 1990
  • Method of optimum design of a compact sensible plate-fin heat exchanger for the heat recovery of exhaust gas from the air conditioning space was developed in consideration of the econamics of investment cost and profit according to the installation of heat exchanges. In the counterflow heat exchanger, the frontal area was fixed and the length of heat exchanger was optimized in order to maximize the net gain according to the setting of the heat exchanger. In the cross flow heat exchanger, the size of the exchanger was also optimized to maximize the net gain.

  • PDF

Analysis of Convective Heat Transfer Characteristics for the Compact Heat Exchanger with Flat Tubes and Plate Fins Having a Non-symmetric Staggered Arrangements (비대칭 엇갈림 배열로 구성된 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 특성 해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.318-325
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchanger with flat tubes and continuous plate fins having a symmetric and non-symm etric staggered arrangements. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental results. In order to investigate the flow and heat transfer features by periodic boundary conditions, the three blocks were used. Predicted heat transfer coefficients between the three blocks are similar while there are relatively differences, compared with the experimental data. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Circular Tubes and Continuous Plate Fins (원형관-평판휜 형상의 밀집형 열교환기 내 공기 측대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.994-1001
    • /
    • 2007
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with circular tubes and continuous plate fins. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental correlations. Three models of standard and RNG $k-{\varepsilon}$, and Reynolds stress are applied for turbulence model applicability. Predicted heat transfer coefficient from the models of standard and RNG $k-{\varepsilon}$ are very close to those of the heat transfer correlations while there are relatively large difference, more than 17 percentage in the result from the Reynolds stress model. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Flat Tubes and Plate Fins According to the Aspect Ratio (종횡비에 따른 납작관-평판휜 형상의 밀집형 열교환기 내공기 측 대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.695-703
    • /
    • 2008
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with flat tubes and continuous plate fins according to the aspect ratio. RNG k-$\varepsilon$ model is applied for turbulence analysis. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous correlations for circular tubes. The numerical conditions are considered for the aspect ratios ranging from 3.06 to 5.44 and Reynolds number ranging from 1000 to 10,000. The results showed that heat transfer coefficients decreased with the increase of aspect ratio. From the calculated results a correlation of Colburn j factor for the considered aspect ratio in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

THERMAL-FLUID PERFORMANCE ANALYSIS OF COMPACT HEAT EXCHANGERS HAVING A PERIODIC CHANNEL CONFIGURATION (주기적인 채널형상을 갖는 고밀도 열교환기의 열유동 성능해석)

  • Kim, M.H.;Lee, W.J.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.47-54
    • /
    • 2007
  • A periodic CFD approach for the performance analysis of compact high temperature heat exchangers is introduced and applied to selected benchmark problems, which are a fully developed 2D laminar heat transfer, a conjugate heat transfer between parallel plates which have exact solutions, and a heat transfer in a real high temperature heat exchanger module. The results for the 2D laminar heat transfer and the 2D conjugate heat transfer showed a very good agreement with the exact solutions. For the high temperature heat exchanger module, the pressure drops were predicted well but some difference was observed in the temperature parameters when compared to the full channel CFD analysis due to assumptions introduced into the periodic approach. Considering its assumptions and simplicities, however, the results showed that the periodic approach provides physically reasonable results and it is sufficient to predict the performance of a heat exchanger within an engineering margin and with much less CPU time than the case of a full channel analysis.

Study on Experimental and Theroretical performances for a Compact Metallic Heat Exchanger for Fuel Cell Systems (연료전지용 소형 금속 열교환기의 성능에 대한 실험 및 이론적 연구)

  • Yoon, Young-Hwan;Paeng, Jin-Gi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.9-18
    • /
    • 2011
  • This study assessed the performance of a compact heat exchanger with staggered tube banks for recuperation of high temperature exhaust thermal energy for SOFC fuel cell system. The compact heat exchanger in this study is two pass system which consists of $315{\times}202.5{\times}48.5mm^3$ and 132 tubes of $6.0mm{\Phi}$ for each heat exchanger. From experiments of the 2 pass heat exchanger system, air temperature was increased from $60{\sim}85^{\circ}C$ to $402{\sim}482^{\circ}C$ while gas temperature was decreased from $600^{\circ}C$ to $305{\sim}402^{\circ}C$ according to mass flow rates of 3.9~7.8 g/s. The experimental heat transfer rates of the heat exchanger were compared with CFD numerical solutions with the conventional ${\xi}-NTU$ method. From the comparisons, the following conclusions were obtained. For the heat exchanger system, the relative errors of heat transfer rate by CFD solution were from 7.1 to 27%, and those by ${\xi}-NTU$ method were from 0.6% to 21% compared with experimental data. From the comparisons, it can be said that both of CFD and ${\xi}-NTU$ method almost simulated to experimental data except specific conditions. Pressure drops through air tubes and gas passages were calculated with both of the CFD computation and head loss equations. The differences between them were from 14 to 22%.

A study of heat transfer characteristics on the Multi-pass Heat exchanger with Minichannel (다분지 미니 채널 열교환기의 액단상 열전달 특성에 관한 연구)

  • Im, Yong-Bin;Lee, Seung-Hun;Kim, Jeung-Hoon;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.357-362
    • /
    • 2006
  • This research focused on the multi-pass heat exchanger using the minichannel possessing the spring fin. An air-water was used as working fluid. The characteristics of liquid single phase heat transfer were verified. The compact heat exchanger (heat transfer area density : ${\beta}=2,146 m^2/m^3$), based on the shape of header(Top combining header), 63 minichannels ($D_i$ : 1.4 mm, L : 0.25 m) and the air side adopting the copper wire spring fin, was fabricated. The heat transfer area density of the air side was improved up to 161% when compared with the conventional fin-tube heat exchanger that adopts the heat transfer tube with the inner diameter of 5 mm. With regard to heat transfer performance, heat transfer rate per unit volume increased up to 142% when compared with the fin-tube heat exchanger adopting the heat transfer tube with the inner diameter of 5 mm.

  • PDF

Analysis for Air-Side Convective Heat Transfer Characteristics in Compact Heat Exchangers (밀집형 열교환기 내 공기 측 대류열전달특성)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1443-1448
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchangers with continuous plate fins. Simulation results such as air flow and temperature distributions are presented, and heat transfer characteristics are compared for various inlet conditions. Results from various turbulence models are also compared for applicability. There is large difference between the local heat transfer coefficient distributions along the cylinder wall for circular tubes. Colburn j factors from the calculated results of circular and flat tubes in the heat exchangers are compared for various Reynolds number. The predicted results in this study can be applied to the optimal design of air conditioning system. with compact heat exchanger.

  • PDF

A Numerical Study on the Flow and Heat Transfer Characteristics of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1366-1371
    • /
    • 2008
  • Four simulation models of plastic plate heat exchangers are designed and simulated. The flat plate type heat exchanger is designed as the reference model in order to evaluate how much thermal performance increases. The turbulence promoter type heat exchanger is fabricated with cylindrical-type vortex generators and rib-type turbulence promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type heat exchanger has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. The flows are assumed as a three-dimensional, incompressible and turbulent model. The standard k-$\varepsilon$ model is used as the turbulent flow modeling, the SIMPLE algorithm is used to treat the coupling between pressure and velocity, and first order upwind scheme is used for discretization of momentum, turbulent and energy. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type.

  • PDF