• Title/Summary/Keyword: Competitive Kinetics

Search Result 73, Processing Time 0.034 seconds

Haldane Inhibition at CAH DNAPL Source Zone in Soil and Groundwater

  • Yu, Seung-Ho;Semprini, Lewis
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.33-36
    • /
    • 2004
  • Two biokinetic models (\circled1 Mrichaelis-Menten kinetics with competitive inhibition \circled2 with both competitive inhibition and Haldane inhibition) for reductive dechlorination were developed and compared with results from batch kinetic tests conducted over a wide range of PCE and TCE concentrations with two different dechlorinating cultures. At PCE concentrations lower than 300 $\mu$M, both model simulated the experimental results well. However, The kinetic model that incorporated both competitive and Haldane inhibitions much better simulated experimental data for PCE concentrations greater than 300-400 $\mu$M, and TCE concentrations at half its solubility limit (4000 $\mu$M). The PM culture showed Haldane inhibition constants of 900, 6000, 7000 $\mu$M for TCE, c-DCE and VC, indicating very weak Haldane inhibition for c-DCE and VC, while the EV culture had lower Haldane inhibition constants for TCE, c-DCE, and VC of 900, 750, and 750 $\mu$M, respectively. The BM culture had better transformation abilities than the individual cultures over a wide range of PCE and TCE concentrations. Modeling results indicated that a combination of competitive and Haldane inhibition kinetics is required to simulate dechlorination over a broad range of concentrations up to the solubility limits of PCE and TCE.

  • PDF

Competitive Growth of Carbon Nanotubes versus Carbon Nanofibers

  • Kim, Sung-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1150-1153
    • /
    • 2003
  • Carbon nanofilaments were formed on silicon substrate using microwave plasma-enhanced chemical vapor deposition method. The structures of carbon nanofilaments were identified as carbon nanotubes or carbon nanofibers. The formation of bamboo-like carbon nanotubes was initiated by the application of the bias voltage during the plasma reaction. The growth kinetics of bamboo-like carbon nanotubes increased with increasing the bias voltage. The growth direction of bamboo-like carbon nanotubes was vertical to the substrate.

Competitive Spectrophotometry for Microbial Dipeptide Transport Systems

  • Hwang, Se-Young;Ki, Mi-Ran;Cho, Suk-Young;Lim, Wang-Jin;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.92-97
    • /
    • 1996
  • Portage kinetic constants of peptide transport can be measured by competitive spectrophotometry. The kinetic constants of L-Glu-L-Glu transport in Escherichia coli were ascertained using L-Phe-L-3-thia-Phe (PSP) as a detector. Since the production of thiophenol upon intracellular hydrolysis of PSP was competitively inhibited by L-Glu-L-Glu, it was able to compute the kinetic constants of L-Glu-L-Glu using this method. The resulted data were in agreement with the values obtained by the method of Michaelis-Menten kinetics. The potential of this method was examined against dipeptide transport systems in various microorganisms. These results strongly suggest that the overall properties of individual systems for dipeptide transports can be easily characterized by competitive spectrophotometry.

  • PDF

Inhibitory Effects of Proanthocyanidin Extracted from Distylium racemosum on ${\alpha}-Amylase$ and ${\alpha}-Glucosidase$ Activities (조록나무 Proanthocyanidin의 ${\alpha}-Amylase$${\alpha}-Glucosidase$에 대한 저해 효과)

  • Ahn, Jin-Kwon;Park, Young-Ki;Park, So-Young;Kim, Yong-Mu;Rhee, Hae-Ik;Lee, Wi-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4 s.139
    • /
    • pp.271-275
    • /
    • 2004
  • Distylium racemosum Sieb. Et Zucc contains some compounds inhibit -amylase activity in experimental conditions. The inhibitory test showed that 50% acetone extracts from the bark and leaves of the plant strongly inhibited salivary -amylase activity. Proanthocyanidin(PA) which has strong inhibitory activity was extracted from the leaves by chromatography on Sephadex LH-20. The inhibitory activities and the inhibition kinetics of the PA were studied against three kinds of enzymes: human salivary ${\alpha}-Amylase$ (SAA), pork pancreatin ${\alpha}-Amylase$ (PAA) and yeast ${\alpha}-Glucosidase$ (AG). Then the activities of PA against SAA, PAA and AG were compared with those of acarbose, a commercial agent. The inhibitory activities of PA were stronger than those of acarbose. Inhibition kinetics of the PA showed competitive inhibition for SAA and PAA, and non competitive inhibition for GA.

STAT mRNA kinetics in the central nervous system during autoimmune encephalomyelitis in lewis rats

  • Jee, Young-heun;Hwang, In-sun;Shin, Tae-kyun;Moon, Chang-jong;Lim, Yoon-kyu;Yeo, In-kyu;Son, Hwa-young
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.163-169
    • /
    • 2004
  • To elucidate the molecular mechanisms of autoimmune inflammation in the central nervous system, we examined the expression and localization of STAT1, STAT3, STAT4 and STAT6 molecules during experimental autoimmune encephalomyelitis (EAE) by competitive PCR. In the present study, we quantitated IL-4 and IL-12 p40 mRNA by competitive PCR in the CNS during EAE. IL-4 mRNA was found at early and peak stages. On the other hand, the IL-12 p40 mRNA level reached maximal levels at the peak stage and still found at the recovery stage of the disease. We examined the kinetics of STAT mRNA in the CNS during EAE and demonstrated that STAT1 and STAT4 mRNA reached a maximal level at the peak stage of EAE, whereas STAT3 mRNA level increased gradually to the recovery stage. STAT6 mRNA increased rapidly at the early stage followed by gradual decrease till the recovery stage. Taken together, these findings suggest that STAT4 which was probably activated by IL-12 plays a pro-inflammatory role and that STAT3 which was activated throughout the disease course seems to serve as a transducer of anti-inflammatory signals.

Identification of Amino Acid Residues Involved in Xylanase Activity from Bacillus alcalophilus AX2000 by Chemical Modifiers (화학수식제에 의한 Bacillus alcalophilus AX2000 유래 Xylanase의 활성에 관여하는 아미노산 잔기의 확인)

  • Park Young-Seo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • The purified xylanase from Bacillus alcalophilus AX2000 was modified with various chemical modifiers to determine amino acid residues in the active site of the enzyme. Treatment of the enzyme with group-specific reagents such as carbodiimide or N-bromosuccinimide resulted in complete loss of enzyme activity. These results suggested that these reagents reacted with glutamic acid or aspartic acid and tryptophan residues located at or near the active site. In each case, inactivation was performed by pseudo first-order kinetics. Inhibition of enzyme activity by carbodiimide and N-bromosuccinimide showed non-competitive and competitive inhibition type, respectively. Addition of xylan to the enzyme solution containing N-bromosuccinimide prevented the inactivation, indicating the presence of tryptophan at the substrate binding site. Analysis of kinetics for inactivation showed that the loss of enzyme activity was due to modification of two glutamic acid or aspartic acid residues and single tryptophan residue.

Identification of Amino Acid Residues Involved in Xylanase Activity from Bacillus Pumilus TX703 (Bacillus Pumilus TX703 유래 Xylanase의 활성에 관여하는 아미노산 잔기의 확인)

  • Park Young-Seo
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.633-640
    • /
    • 2005
  • The purified xylanase from Bacillus pumilus TX703 was modified with various chemical modifiers to determine the active sites of the enzyme. Treatment of the enzyme with group-specific reagents such as carbodiimide or N-bromosuccinimide resulted in complete loss of enzyme activity. These results assumed that these reagents reacted with glutamic acid or aspartic acid and tryptophan residues located at or near the active site. In each case, inactivation was performed by pseudo first-order kinetics. Inhibition of enzyme activity by carbodiimide and W-bromosuccinimide showed non-competitive and competitive inhibition type, respectively. Addition of xylan to the enzyme solution containing N-bromosuccinimide prevented the inactivation, indicating the presence of tryptophan at the substrate binding site. Analysis of kinetics for inactivation showed that the loss of enzyme activity was due to modification of two glutamic acid or aspartic acid residues and single tryptophan residue.

The fermentation kinetics of protease inhibitor production by streptomyces fradiae (Streptomyces fradiae에서 분리한 단백질 분해효소 저해물질 생성의 동력학적 특성)

  • 이병규;정영화;이계준
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.264-267
    • /
    • 1990
  • The objectives of the current studies were to establish the optimal conditions for the production of extracellular protease inhibitor in a strain of Streptomyces fradiae. As results, it was found that cell specific growth rate was very critical for the production of protease inhibitor and the optimum specific growth rate was found to be 0.05 h$^{-1}$ . Dissolved oxygen tension and pH were also important to regulate the inhibitor production. The inhibitory mode of the purified inhibitor to .alpha.-chymotrypsin was found to be competitive (K$_{i}$=5.5*10$^{-7}$ M). One mole of inhibitor could bind two moles of .alpha.-chymotrypsin and the complex has very low dissociation constant.t.

  • PDF

Kinetic Approaches to Measuring Peroxiredoxin Reactivity

  • Winterbourn, Christine C.;Peskin, Alexander V.
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • Peroxiredoxins are ubiquitous thiol proteins that catalyse the breakdown of peroxides and regulate redox activity in the cell. Kinetic analysis of their reactions is required in order to identify substrate preferences, to understand how molecular structure affects activity and to establish their physiological functions. Various approaches can be taken, including the measurement of rates of individual steps in the reaction pathway by stopped flow or competitive kinetics, classical enzymatic analysis and measurement of peroxidase activity. Each methodology has its strengths and they can often give complementary information. However, it is important to understand the experimental conditions of the assay so as to interpret correctly what parameter is being measured. This brief review discusses different kinetic approaches and the information that can be obtained from them.