• Title/Summary/Keyword: Complex Banach space

Search Result 44, Processing Time 0.022 seconds

PLANK PROBLEMS, POLARIZATION AND CHEBYSHEV CONSTANTS

  • Revesz, Szilard-Gy.;Sarantopoulos, Yannis
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.157-174
    • /
    • 2004
  • In this work we discuss "plank problems" for complex Banach spaces and in particular for the classical $L^{p}(\mu)$ spaces. In the case $1\;{\leq}\;p\;{\leq}\;2$ we obtain optimal results and for finite dimensional complex Banach spaces, in a special case, we have improved an early result by K. Ball [3]. By using these results, in some cases we are able to find best possible lower bounds for the norms of homogeneous polynomials which are products of linear forms. In particular, we give an estimate in the case of a real Hilbert space which seems to be a difficult problem. We have also obtained some results on the so-called n-th (linear) polarization constant of a Banach space which is an isometric property of the space. Finally, known polynomial inequalities have been derived as simple consequences of various results related to plank problems.

STUDY ON THE JOINT SPECTRUM

  • Lee, Dong Hark
    • Korean Journal of Mathematics
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • We introduce the Joint spectrum on the complex Banach space and on the complex Hilbert space and the tensor product spectrums on the tensor product spaces. And we will show ${\sigma}[P(T_1,T_2,{\ldots},T_n)]={\sigma}(T_1{\otimes}T_2{\otimes}{\cdots}{\otimes}T_n)$ on $X_1{\overline{\otimes}}X_2{\overline{\otimes}}{\cdots}{\overline{\otimes}}X_n$ for a polynomial P.

  • PDF

THE KÜNNETH SPECTRAL SEQUENCE FOR COMPLEXES OF BANACH SPACES

  • Park, HeeSook
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.809-832
    • /
    • 2018
  • In this paper, we form the basis of the abstract theory for constructing the $K{\ddot{u}}nneth$ spectral sequence for a complex of Banach spaces. As the category of Banach spaces is not abelian, several difficulties occur and hinder us from applying the usual method of homological algebra directly. The most notable facts are the image of a morphism of Banach spaces is not necessarily a Banach space, and also the closed summand of a Banach space need not be a topological direct summand. So, we consider some conditions and categorical terms that fit the category of Banach spaces to modify the familiar method of homological algebra.

ULTRASEPARABILITY OF CERTAIN FUNCTION ALGEBRAS

  • Hwang, Sun-Wook
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.299-302
    • /
    • 1994
  • Throughout this paper, let X be a compact Hausdorff space, and let C(X) (resp. $C_{R}$ /(X)) be the complex (resp. real) Banach algebra of all continuous complex-valued (resp. real-valued) functions on X with the pointwise operations and the supremum norm x. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.(omitted)

  • PDF

ON UNIFORMLY ULTRASEPARATING FAMILY OF FUNCTION ALGEBRAS

  • Hwang, Sunwook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.125-134
    • /
    • 1993
  • Let X be a compact Hausdorff space, and let C(X) (resp. $C_{R}$(X)) be the complex (resp. real) Banach algebra of all continuous complex-valued(resp. real-valued) functions on X with the pointwise operations and the supremum norm x. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.s.

  • PDF

BOUNDARIES FOR AN ALGEBRA OF BOUNDED HOLOMORPHIC FUNCTIONS

  • Moraes, L.A.;Grados, L.-Romero
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.231-242
    • /
    • 2004
  • Let $A_b(B_E)$ be the Banach algebra of all complex valued bounded continuous functions on the closed unit ball $B_E$ of a complex Banach space E, and holomorphic in the interior of $B_E$, endowed with the sup norm. We present some sufficient conditions for a set to be a boundary for $A_b(B_E)$ in case E belongs to a class of Banach spaces that includes the pre-dual of a Lorentz sequence space studied by Gowers in [6]. We also prove the non-existence of the Shilov boundary for $A_b(B_E)$ and give some examples of boundaries.

JOINT SPATIAL NUMERICAL RANGES OF OPERATORS ON BANACH SPACES

  • Yang, Youngoh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.119-126
    • /
    • 1989
  • Throughout this paper, X will always denote a Banach space over the complex numbers C, and L(X) will denote the Banach algebra of all continuous linear operators on X. Operator will always mean continuous linear operator. An n-tuple of operators T$_{1}$,..,T$_{n}$ on X will be denoted by over ^ T=(T$_{1}$,..,T$_{n}$ ). Let L$^{n}$ (X) be the set of all n-tuples of operators on X. X' will denote the dual space of X, S(X) its unit sphere and .PI.(X) the subset of X*X' defined by .PI.(X)={(x,f).mem.X*X': ∥x∥=∥f∥=f(x)=1}.

  • PDF

A BANACH ALGEBRA AND ITS EQUIVALENT SPACES OVER PATHS WITH A POSITIVE MEASURE

  • Cho, Dong Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.809-823
    • /
    • 2020
  • Let C[0, T] denote the space of continuous, real-valued functions on the interval [0, T] and let C0[0, T] be the space of functions x in C[0, T] with x(0) = 0. In this paper, we introduce a Banach algebra ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ on C[0, T] and its equivalent space ${\bar{\mathcal{F}}}({\mathcal{H}}) $, a space of transforms of equivalence classes of measures, which generalizes Fresnel class 𝓕(𝓗), where 𝓗 is an appropriate real separable Hilbert space of functions on [0, T]. We also investigate their properties and derive an isomorphism between ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ and ${\bar{\mathcal{F}}}({\mathcal{H}}) $. When C[0, T] is replaced by C0[0, T], ${\bar{\mathcal{F}}}({\mathcal{H}}) $ and ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ reduce to 𝓕(𝓗) and Cameron-Storvick's Banach algebra 𝓢, respectively, which is the space of generalized Fourier-Stieltjes transforms of the complex-valued, finite Borel measures on L2[0, T].