• Title/Summary/Keyword: Complex refractive index

Search Result 56, Processing Time 0.041 seconds

Determination of the complex refractive index and thickness of MNA/PMMA thin film (MNA/PMMA 고분자박막의 복소굴절율 및 두께결정)

  • 김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.357-362
    • /
    • 1996
  • The thickness and the spectrum of the complex refractive index in the region 1.5~4.5 eV, of an MNA/PMMA thin film fabricated by spin casting are determined. The film thickness and the refractive index in its transparent region is calculated by modeling the spectroscopic ellipsometry data. The extinction coefficient spectrum is obtained from the absorption spectrum in its non-transparent region. The best fit oscillator parameters of the classical Lorentz oscillator and a quantum mechanical oscillator are found. The complex refractive index spectrum by these oscillators are compared. The present technique can be applied to get the thickness and the complex refractive index of unknown polymer films and thus it will be useful in optical characterization of those films.

  • PDF

Optical Constants and Dispersion Parameters of CdS Thin Film Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.196-199
    • /
    • 2012
  • CdS thin film was prepared on glass substrate by chemical bath deposition in an alkaline solution. The optical properties of CdS thin film were investigated using spectroscopic ellipsometry. The real (${\varepsilon}_1$) and imaginary (${\varepsilon}_2$) parts of the complex dielectric function ${\varepsilon}(E)={\varepsilon}_1(E)+i{\varepsilon}_2(E)$, the refractive index n(E), and the extinction coefficient k(E) of CdS thin film were obtained from spectroscopic ellipsometry. The normal-incidence reflectivity R(E) and absorption coefficient ${\alpha}(E)$ of CdS thin film were obtained using the refractive index and extinction coefficient. The critical points $E_0$ and $E_1$ of CdS thin film were shown in spectra of the dielectric function and optical constants of refractive index, extinction coefficient, normal-incidence reflectivity, and absorption coefficient. The dispersion of refractive index was analyzed by the Wemple-DiDomenico single-oscillator model.

Analytic Solution for an Eaton Lens for Rotating 90°

  • Zhao, Cun-Hua
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.326-329
    • /
    • 2020
  • The Eaton lens, with spherical symmetry to its refractive index, was described by Eaton in 1952 and was found recently in the design of an invisible sphere for cloaking. In this paper, an Eaton lens for rotating 90° was designed using Luneburg theory, by which we found it was a fourth-order equation in the refractive index n. Therefore, the refractive index n has four roots. The equation in n was solved and studied using mathematical technology. The unsuitable complex roots of the equation should be dropped; consequently, only one of the four roots remained. To verify the refractive-index profile, the only root was solved for, before a simulation using finite-element analysis (FEA) was performed. The simulation showed that all rays will bend 90° to the right. The result of the simulation is identical to our expectation. This treatment provides a possible method for rotating light at many other angles.

Highly Efficient PIV Measurement of Complex Flows Using Refractive Index Matching Technique

  • NISHINO Koichi;KAWAGUCHI Daisuke;KOSUGI Takashi;ISODA Haruo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.57-63
    • /
    • 2004
  • various applications is presented. It is based on rapid-prototyping of transparent model for flow visualization and on the use of refractive index matching that enables efficient and clear visualization of the flow inside the model. The model is immersed in the index-matching fluid in a glass tank so that any displacement and rotation of the model in the tank have no influence on the optical setup for image acquisition to be made through a glass wall. This can facilitate greatly the camera calibration for stereo PIV and 3-D PTV. As the flow model is generated directly from 3-D surface data, no laborious preparation of the flow model is needed. This approach for seamless linking of model generation and PIV measurement is applicable to various flow measurements in automobile, ship building, fluid machinery, turbine, electrical appliances, heat exchanger, electronic cooling, bio-engineering and so on.

  • PDF

Study of the Correlation of Plasma Resonance and the Refractive Index to Dielectric Dispersion in the Complex Plane

  • Zhou, Xiao-Yong;Shen, Yan;Hu, Er-Tao;Chen, Jian-Bo;Zhao, Yuan;Sheng, Ming-Yu;Li, Jing;Zheng, Yu-Xiang;Zhao, Hai-Bin;Chen, Liang-Yao;Li, Wei;Jiang, Xun-Ya;Lee, Young-Pak;Lynch, David W.
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • Based on the dispersive feature of the dielectric function of noble metals and the wave vector conservation in physics, both the plasma effect and the complex refractive index, which are profoundly correlated to the complex dielectric function and permeability, have been studied and analyzed. The condition to induce a bulk or a surface plasma in the visible region will not be satisfied, and there will be one solution for the real and the imaginary parts of the refractive index, restricting it only to region I of the complex plane. The results given in this work will aid in understanding the properties of light transmission at the metal/dielectric interface as characterized by the law of refraction in nature.

Refractive index change of nonlinear polymer thin films induced by corona poling and quantitative evaluation of poling effect (코로나 극성배향이 비선형 고분자박막의 복소굴절율에 미치는 영향 및 배향효과의 정량화)

  • 길현옥;김상준;방현용;김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.181-187
    • /
    • 1999
  • We prepared the side-chain type nonlinear optical NPP(N-(6-nitrophenyl)-(L)-prolinol) polymer films by spin coating method. Ellipsometric spectra were in situ collected by using spectroscopic phase modulated ellipsometer while the NPP polymer films were being corona poled at the temperature above glass transition. We calculated film thickness and the refractive index dispersion by modeling the spectro-ellipsometry data in transparent region. We also calculated the refractive index and the extinction coefficient of the polymer films by numerically inverting the spectro-ellipsometry data in absorbing region, while the previously determined film thickness was used. The independently determined extinction coefficient spectra from the analysis of transmission spectra were compared with those by spectro-ellipsometry and they showed an excellent agreement with each other. From the analysis of the complex refractive index change of the NPP polymer thin films induced by the corona poling, we could determine the vertical complex refractive index and the horizontal complex refractive index separately. Using the volume fraction of the vertical component f⊥, the degree of poling of poled NPP polymer films was quantitatively addressed. It is suggested that the present method can be used to quantitatively address the degree of poling in an absolute manner and to depth profile the poled fraction of thick polymer films. It will be useful to understand the structural change of polymer films and hence the poling mechanism during the poling process.

  • PDF

Analysis of the Spectro-ellipsometric Data with Backside Reflection from Semi-transparent Substrate by Using a Rotating Polarizer Ellipsometer (반투명 기층에 의한 후면반사를 고려한 회전검광자 방식의 타원측정 및 분석)

  • Seo, Yeong-Jin;Park, Sang-Uk;Yang, Seong-Mo;Kim, Sang-Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.170-178
    • /
    • 2011
  • The spectroscopic ellipsometric constants are analyzed to determine the thickness and the complex refractive index of a film coated on a semi-transparent substrate, with the reflection from the backside of the substrate properly considered. Expressions representing the effect of the backside reflection on ellipsometric constants are derived using the thickness and the complex refractive index of the substrate. The thickness and the complex refractive of an ITO thin film coated on a glass substrate are obtained by using this method. The results agree quite well with the ones obtained by following the conventional modeling procedure where the backside reflection is neglected during ellipsometric measurement and analysis.

Complex refractive index of PECVD grown DLC thin films and density variation versus growth condition (PECVD 방법으로 성장시킨 DLC 박막의 복소굴절율 및 성장조건에 따른 박막상수 변화)

  • 김상준;방현용;김상열;김성화;이상현;김성영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • The complex refractive index of Diamond-like Carbon (DLC) thin films, which can be applied to optical devices or electrical devices, have been determined using optical methods. DLC thin films are grown on Si(100) substrates and vitreous silica substrates respectively, using the technique of plasma enhanced chemical vapor deposition (PECVD). The spectroscopic ellipsometry data($\psi$, $\Delta$) and the transmission spectra of these DLC films are obtained. These optical spectra are analyzed with the help of the Sellmeier dipersion relation and a quantum mechanically derived dispersion relation. Using spectroscopic ellipsometry data at their transparent region, the refractive index and the effective thickness of DLC films on vitreous silica are model calculated, Then the transmission spectra are inverted to yield the extinction coefficient spectra k(λ) at absorbing region. These spectra are fit to the quantum mechanical dispersion relation and the best fit dispersion constants are determined. The complex refractive indices are easily calculated with these constants. The spectroscopic ellipsometry data at the absorbing region in model calculated to give the packing densities and the degrees of surface microroughness of DLC films. Discussions are made in correlation with the growth condition of DLC films.

  • PDF