• 제목/요약/키워드: Composite Patch

검색결과 166건 처리시간 0.029초

Analysis of the adhesive damage for different patch shapes in bonded composite repair of corroded aluminum plate

  • Mohamed, Berrahou;Bouiadjra, B. Bachir
    • Structural Engineering and Mechanics
    • /
    • 제59권1호
    • /
    • pp.123-132
    • /
    • 2016
  • Many military and commercial aging aircrafts flying beyond their design life may experience severe crack and corrosion damage, and thus lead to catastrophic failures. In this paper, were used in a finite element model to evaluate the effect of corrosion on the adhesive damage in bonded composite repair of aircraft structures. The damage zone theory was implemented in the finite element code in order to achieve this objective. In addition, the effect of the corrosion, on the repair efficiency. Four different patch shapes were chosen to analyze the adhesive damage: rectangular, trapezoidal, circular and elliptical. The modified damage zone theory was implemented in the FE code to evaluate the adhesive damage. The obtained results show that the adhesive damage localized on the level of corrosion and in the sides of patch, and the rectangular patch offers high safety it reduces considerably the risk of the adhesive failure.

노후항공기의 보수 방법 및 복합재 패치보수의 응용 (Repair methods for aging aircraft and application of composite patch repair)

  • 김위대;김종진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.167-172
    • /
    • 2002
  • During the operation of military aircraft, maintenance is divided into organizational, intermediate and depot maintenance. In the depot maintenance, after removal of major parts and removable doors, damage assessment is performed. Locating damage, charactering the damage and determining its extent, zoning the damage on the part being repaired and re-evaluation of the damaged area after damage removal. Repair joints are classified by bonded joints and bolted joints, depending on joining material. In this paper, repair method in aging aircraft is investigated and the possibility of application of copmposite patch is surveyed.

  • PDF

Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch

  • Mechab, Belaid;Chama, Mourad;Kaddouri, Khacem;Slimani, Djelloul
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1173-1182
    • /
    • 2016
  • The objective of this work was to evaluate the ductile cracked structures with bonded composite patch used in probabilistic elastic plastic fracture mechanics subjected to tensile load. The finite element method is used to analyze the stress intensity factors for elastic case, the effect of cracks and the thickness of the patch ($e_r$) are presented for calculating the stress intensity factors. For elastic-plastic the Monte Carlo method is used to predict the distribution function of the mechanical response. According to the obtained results, we note that the stress variations are important factors influencing on the distribution function of (J/Je).

Impact of bonding defect on the tensile response of a composite patch-repaired structure: Effect of the defect position and size

  • N., Kaddouri;K., Madani;S.CH., Djebbar;M., Belhouari;R.D.S.G., Campliho
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.799-811
    • /
    • 2022
  • Adhesive bonding has seen rapid development in recent years, with emphasis to composite patch repairing processes of geometric defects in aeronautical structures. However, its use is still limited given its low resistance to climatic conditions and requirement of specialized labor to avoid fabrication induced defects, such as air bubbles, cracks, and cavities. This work aims to numerically analyze, by the finite element method, the failure behavior of a damaged plate, in the form of a bonding defect, and repaired by an adhesively bonded composite patch. The position and size of the defect were studied. The results of the numerical analysis clearly showed that the position of the defect in the adhesive layer has a large effect on the value of J-Integral. The reduction in the value of J-Integral is also related to the composite stacking sequence which, according to the mechanical properties of the ply, provides better load transfer from the plate to the repair piece through the adhesive. In addition, the increase in the applied load significantly affects the value of the J-Integral at the crack tip in the presence of a bonding defect, even for small dimensions, by reducing the load transfer.

복합재료 쉘 구조물의 수리 시 발생하는 잔류변형 (Residual Deformation Induced by the Repair of Composite Shell Structures)

  • 최항석;정의승;이수용
    • Composites Research
    • /
    • 제12권4호
    • /
    • pp.17-24
    • /
    • 1999
  • 프리프레그 덧대기 방법을 이용하여 복합재료 쉘 구조물을 수리할 때 발생하는 잔류 변형을 고찰하기 위해서 유한요소해석과 실험을 수행하였다. 삼차원 응축 쉘 요소와 일차 전단변형 이론에 기초하여 유한요소 프로그램을 개발하였다. 자유 경계조건을 갖는 적층 쉘에 대한 해석결과를 프리프레그 덧대기 수리과정을 통해 측정된 변형률과 비교 검토하였다. 네 변이 고정된 적층 쉘을 프리프레그 덧대기로 수리할 경우 최종 잔류응력이 덧대기 부근에서 크게 발생하였다. 적층 쉘과 덧대기의 적층순서는 잔류응력에 크게 영향을 미치고, 또한 적층 쉘과 덧대기의 적층 순서가 동일해도 잔류응력이 발생하였다.

  • PDF

볼트 균열 홀을 갖는 알루미늄 6061-T6 합금의 패치 본딩 보수/보강 부위에 대한 파괴역학적 해석에 관한 연구 (The failure analysis of patch bonded repair on Al 6061-T6 alloy structures with cracked bolt hole)

  • 윤영기;김국기;박종준;윤희석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.148-152
    • /
    • 2000
  • The aluminum alloy 6061-T6 has been successfully used in structural applications especially the pressure vessel of the Advanced Neutron Source research reactor. And aluminum alloys, including 6061-T6, have a face-centered-cubic crystals structure. Under normal circumstances face-centered-cubic crystal structures do not exhibit cleavage fractures even at very lo9w temperatures. In aluminum-based structures, plates frequently find use as connecting links. Mechanical fasteners are often utilized in instances where ease of application, familiarity with fabrication processes, and severe dynamic loading are of concern. Plates frequently find use as connecting elements in structures built from aluminum alloys. Many structural elements employ mechanical fasteners. Twenty and twenty aluminum alloy 6061-T6 plates, representing four different bolt patterns, were mechanically deformed. And variable materials such as A1 6061-T6, Al 2024-T3, Carbon/Epoxy, Glass/Epoxy Composite and Woven fiber composite, are used as patch materials. From this experiment, it has been shown that the strength of patch-repaired specimens is different with the patch materials.

  • PDF

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.

Experimental and numerical study of effect of the fibers orientation of the different types of composite plates notched of U-shape repaired by composite patch

  • Berrahou Mohamed;Amari Khaoula;Belkaddour Leila;Serier Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제88권3호
    • /
    • pp.201-208
    • /
    • 2023
  • In this work, the effect of the correction fibers direction on the efficiency of repairing damaged composite plates was highlighted. The composite plates studied in this work consist of eight layers of graphite/epoxy, while the patch used in this repair consists of four layers of the same type. The results obtained in this work, whether with regard to the experimental or analytical side, showed that the fibers orientation affects the repair efficiency, so the closer the angle of fibers inclination is to the tensile strength direction, the performance of the composite material is ideal. Hence, we conclude that the composite materials with longitudinal fibers (Parallel to tensile strength) is the most powerful and efficient material in performance.

접착 패칭된 박-후판 결합형 보강판의 피로균열성장 거동 (Fatigue Crack Growth Behavior of the Thin-to-Thick Type Stiffened Panels with Bonded Patch)

  • 이환우;김승현
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.89-95
    • /
    • 2008
  • Fatigue cracked components often needs to be repaired during service. Standard repair schemes involve strengthening the component by connecting reinforcing members by means of rivets or welding by reducing the crack-tip stress intensity factors. Recent technological advances in fiber reinforced composite materials and adhesive bonding have led to the development of efficient repair schemes. In this study, the influence of various shape parameters on fatigue crack growth in the CCT type uniform thickness plates and the thin-ta-thick type stiffened panels repaired with woven fabric type Kevlar-Epoxy composite patch are studied experimentally.

3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM

  • Jamal-Omidi, Majid;Falah, Mehdi;Taherifar, Davood
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.525-539
    • /
    • 2014
  • Bonded composite-patch repair has been widely used to restore or extend the service life of damaged structures due to its effectiveness as a mechanical repair technique. In this paper using extended finite element method (XFEM), three-dimensional crack models are developed to examine the fracture behavior of centrally cracked aluminum plates repaired with single and double sided composite patches. Stress intensity factor (SIF) at the crack tip is used as the fracture criterion. In this regard, the effects of the crack lengths, patch materials, orientation of plies, adhesive and patch thickness are examined to estimate the SIF of the repaired plate and the repair performance. The obtained results show that composite patches have significant effect on reduction of the SIF at the crack tip. It is also proved that using double symmetric repair, in comparison to single one, reduces considerably SIF at the crack tip. Hence, the residual strength can be improved significantly as well as fatigue life of the structure. Investigation of ply orientation effects shows SIF increase as the ply orientation is changed from $0^{\circ}$ (perpendicular to the advancing crack) to $90^{\circ}$ (parallel to the crack line). However, the effectiveness of the ply orientation depends on the loading direction and the crack direction.