• Title/Summary/Keyword: Composite Silicide

Search Result 31, Processing Time 0.034 seconds

Property of Composite Silicide from Nickel Cobalt Alloy (니켈 코발트 합금조성에 따른 복합실리사이드의 물성 연구)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • For the sub-65 nm CMOS process, it is necessary to develop a new silicide material and an accompanying process that allows the silicide to maintain a low sheet resistance and to have an enhanced thermal stability, thus providing for a wider process window. In this study, we have evaluated the property and unit process compatibility of newly proposed composite silicides. We fabricated composite silicide layers on single crystal silicon from $10nm-Ni_{1-x}Co_x/single-crystalline-Si(100),\;10nm-Ni_{1-x}Co_x/poly-crystalline-\;Si(100)$ wafers (x=0.2, 0.5, and 0.8) with the purpose of mimicking the silicides on source and drain actives and gates. Both the film structures were prepared by thermal evaporation and silicidized by rapid thermal annealing (RTA) from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, surface composition, were investigated using a four-point probe, a field emission scanning probe microscope, a field ion beam, an X-ray diffractometer, and an Auger electron depth profi1ing spectroscopy, respectively. Finally, our newly proposed composite silicides had a stable resistance up to $1100^{\circ}C$ and maintained it below $20{\Omega}/Sg$., while the conventional NiSi was limited to $700^{\circ}C$. All our results imply that the composite silicide made from NiCo alloy films may be a possible candidate for 65 nm-CMOS devices.

The Study of Formation of Ti-silicide deposited with Composite Target [II] (Composite Target으로 증착된 Ti-silicide의 현성에 관한 연구[II])

  • Choi, Jin-Seog;Paek, Su-Hyon;Song, Young-Sik;Sim, Tae-Un;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.191-197
    • /
    • 1991
  • The surface roughnesses of titanium silicide films and the diffusion behaviours of dopants in single crystal and polycrystalline silicon substrates durng titanium silicide formation by rapid thermal annealing(RTA) of sputter deposited Ti-filicide film from the composite $TiSi_{2.6}$ target were investigated by the secondary ion mass spectrometry(SIMS), a four-point probe, X-ray diffraction, and surface roughness measurements. The as-deposited films were amorphous but film prepared on single silicon substrate crystallized to the orthorhombic $TiSi_2$(C54 structure) upon rapid thermal annealing(RTA) at $800^{\circ}C$ for 20sec. There was no significant out-diffusion of dopants from both single crystal and polycrystalline silicon substrate into titanum silicide layers during annealing. Most of the implanted dopants piled up near the titanium silicide/silicon interface. The surface roughnesses of titanium silicide films were in the range between 16 and 22nm.

  • PDF

IR Absorption Property in NaNo-thick Nickel Cobalt Composite Silicides (나노급 두께의 Ni50Co50 복합 실리사이드의 적외선 흡수 특성 연구)

  • Song, Oh Sung;Kim, Jong Ryul;Choi, Young Youn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.88-96
    • /
    • 2008
  • Thermal evaporated 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films were deposited to examine the energy saving properties of silicides formed by rapid thermal annealing at temperature ranging from 500 to $1,100^{\circ}C$ for 40 seconds. Thermal evaporated 10 nm-Ni/(70 nm-poly)Si films were also deposited as a reference using the same method for depositing the 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films. A four-point probe was used to examine the sheet resistance. Transmission electron microscopy (TEM) and X-ray diffraction XRD were used to determine cross sectional microstructure and phase changes, respectively. UV-VIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were used to examine the near-infrared (NIR) and middle-infrared (MIR) absorbance. TEM analysis confirmed that the uniform nickel-cobalt composite silicide layers approximately 21 to 55 nm in thickness had formed on the single and polycrystalline silicon substrates as well as on the 25 to 100 nm thick nickel silicide layers. In particular, nickel-cobalt composite silicides showed a low sheet resistance, even after rapid annealing at $1,100^{\circ}C$. Nickel-cobalt composite silicide and nickel silicide films on the single silicon substrates showed similar absorbance in the near-IR region, while those on the polycrystalline silicon substrates showed excellent absorbance until the 1,750 nm region. Silicides on polycrystalline substrates showed high absorbance in the middle IR region. Nickel-cobalt composite silicides on the poly-Si substrates annealed at $1,000^{\circ}C$ superior IR absorption on both NIR and MIR region. These results suggest that the newly proposed $Ni_{50}Co_{50}$ composite silicides may be suitable for applications of IR absorption coatings.

SIMS analysis of the behavior of boron implanted into single silicon during the Ti-silicide formation (Ti-silicide 박막 형성시 규소 기판에 이온 주입된 붕소 거동에 대한 SIMS 분석)

  • Hwang, Yoo Sang;Paek, Su Hyon;Cho, Hyun Choon;Mah, Jae Pyung;Choi, Jin Seog;Kang, Sung Gun
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.199-202
    • /
    • 1992
  • Ti-silicide was formed by using metal-Ti target and composite target on the silicon substrate that $BF_2$ were introduced into. Implant energies of $BF_2$ were 50keV and 90keV. The behavior of boron was investigated by SIMS. The redistribution of boron occurred during the formation of Ti-silicide by metal-Ti target and the sample implanted at the energy of 50keV showed severe out-diffusion. In the case that Ti-silicide was formed by composite target, there was little redistribution of boron.

  • PDF

Patterning and Characterization of Co/Ni Composite Silicide using EIB (FIB를 이용한 CoNi 복합실리사이드 나노배선의 패턴가공과 형상 분석)

  • Song Oh-Sung;Kim Sang-Yeob;Jung Yoon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.332-337
    • /
    • 2006
  • We prepared 100 nm-thick CoNi composite silicide on a 70 nm-thick polysilicon substrate. Composite silicide laye.s were formed by rapid thermal annealing(RTA) at the temperatures of $700^{\circ}C,\;900^{\circ}C,\;1000^{\circ}C$ for 40 seconds. A Focused ion beam (FIB) was used to make nano-patterns with the operation range of 30 kV and $1{\sim}100$ pA. We investigated the change of thickness, line width, and the slope angle of the silicide patterns by FIB. More easily made with the FIB process than with the conventional polycide process. We successfully fabricated sub-100nm etched patterns with FIB condition of 30kv-30pA. Our result implies that we may integrate nano patterns with our newly proposed CoNi composite silicides.

  • PDF

Milling of NiCo Composite Silicide Interconnects using a FIB (FIB를 이용한 니켈코발트 복합실리사이드 미세 배선의 밀링 가공)

  • Song, Oh-Sung;Yoon, Ki-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.615-620
    • /
    • 2008
  • We fabriacted thermal evaporated $10nm-Ni_{1-x}Co_x$(x=0.2, 0.6, and 0.7) films on 70 nm-thick polysilicon substrate with $0.5{\mu}m$ line width. NiCo composite silicide layers were formed by rapid thermal annealing (RTA) at the temperatures of $700^{\circ}C$ and $1000^{\circ}C$. Then, we checked the microstructure evaluation of silicide patterns. A FIB (focused ion beam) was used to micro-mill the interconnect patterns with low energy condition (30kV-10pA-2 sec). We investigated the possibility of selective removal of silicide layers. It was possible to remove low resistance silicide layer selectively with the given FIB condition for our proposed NiCo composite silicides. However, the silicides formed from $Ni_{40}Co_{60}$ and $Ni_{30}Co_{70}$ composition showed void defects in interconnect patterns. Those void defects hinder the selective milling for the NiCo composite silicides.

Fabrication of Molybdenum Silicide-based Composites with Uniformly Dispersed Silicon Carbide (탄화 규소가 균일 분산된 규화 몰리브데넘계 복합재의 제조)

  • Choi, Won June;Park, Chun Woong;Kim, Young Do;Byun, Jong Min
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.402-407
    • /
    • 2018
  • Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicide-based composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and ${\beta}-SiC$ as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed ${\beta}-SiC$ are fabricated using pressureless sintering. The relative density of the specimens sintered at $1500^{\circ}C$ for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.

Micro-pinholes in Composite Cobalt Nickel Silicides (코발트 니켈 합금 구조에서 생성된 실리사이드의 마이크로 핀홀의 발생)

  • Song, Oh-Sung;Kim, Sang-Yeob;Jeon, Jang-Bae;Kim, M.J.
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.656-662
    • /
    • 2006
  • We fabricated thermal evaporated 10 nm-$Ni_xCo_{1-x}$ (x=0.2, 0.5 and 0.8) /(poly)Si films to form nanothick cobalt nickel composite silicides by a rapid thermal annealing at $700{\sim}1100^{\circ}C$ for 40 seconds. A field emission scanning electron microscope and a micro-Raman spectrometer were employed for microstructure and silicon residual stress characterization, respectively. We observed self-aligned micro-pinholes on single crystal silicon substrates silicidized at $1100^{\circ}C$. Raman silicon peak shift indicates that the residual tensile strain of $10^{-3}$ in single crystal silicon substrates existed after the silicide process. We propose thermal stress from silicide exothermic reaction and high temperature silicidation annealing may cause the pinholes. Those pinholes are expected to be avoided by lowering the silicidation temperature. Our results imply that we may use our newly proposed composite silicides to induce the appropriate strained layer in silicion substrates.

Microstructure Characterization for Nano-thick Nickel Cobalt Composite Silicides from 10 nm-Ni0.5Co0.5 Alloy films (10 nm 두께의 니켈 코발트 합금 박막으로부터 제조된 니켈코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Kim, Sang-Yeob;Kim, Jong-Ryul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.308-317
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/(poly)Si and 10 nm-$Ni_{0.5}Co_{0.5}$/(Poly)Si structures to investigate the microstructure of nickel silicides at the elevated temperatures required lot annealing. Silicides underwent rapid annealing at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profilescope were employed for the determination of vortical microstructure and thickness. Nickel silicides with cobalt on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1100^{\circ}C$ and $900^{\circ}C$, respectively, while the conventional nickle monosilicide showed low resistance below $700^{\circ}C$. Through TEM analysis, we confirmed that a uniform, $10{\sim}15 nm$-thick silicide layer formed on the single-crystal silicon substrate for the Co-alloyed case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo-alloy composite silicide process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Characteristics of Ni/Co Composite Silicides for Poly-silicon Gates (게이트를 상정한 니켈 코발트 복합실리사이드 박막의 물성연구)

  • Kim, Sang-Yeob;Jung, Young-Soon;Song, Oh-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.149-154
    • /
    • 2005
  • We fabricated Ni/Co(or Co/Ni) composite silicide layers on the non-patterned wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\~}1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the poly silicon inversion due to fast metal diffusion lead to decrease silicide thickness. Our results imply that we should consider the serious inversion and fast transformation in designing and process f3r the nano-height fully cobalt nickel composite silicide gates.

  • PDF