• Title/Summary/Keyword: Composite laminates

Search Result 640, Processing Time 0.026 seconds

Design of Composite Laminates Using Enumeration Method (나열법을 이용한 복합재 적층판 설계)

  • Joung, Chanwoo;Bae, Il-Joon;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.288-295
    • /
    • 2020
  • Fiber-reinforced composite laminates have high specific stiffness and strength and are expected to be useful for weight reduction in weight-sensitive industries, such as automotive and aerospace. However, designing composite laminates is often dependent on designer's experience and intuition because of difficulties in determining the number of plies and stacking sequence, which tends to lead to over-design. In this study, optimal design of composite laminates was performed to minimize weight, while withstanding the given load. Based on the enumeration method, all combinations of stacking sequence satisfying the design guideline for composite laminates were considered. Composite laminates were discretized into panels. Optimal number of plies and stacking sequence for each panel were determined considering local load on each panel and contiguity across adjacent panels. Failure index from Tsai-Wu criteria was optimized for strength and buckling analysis was performed for compressive load. Stacking angles of 0, ±45 and 90° were used.

Evaluation of Tensile Properties of Carbon Fiber Reinforced Composite Laminates with Non-Woven Carbon Mat (부직포를 삽입한 탄소섬유강화 복합적층판의 인장특성 평가)

  • 정성균
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.96-100
    • /
    • 1997
  • Tensile properties of carbon fiber reinforce composite laminates with non-woven carbon mat are evaluated in this paper. Composite laminates are made by inserting non-wovon carbon mat between layers, The specimens were cut and polished according to ASTM standard . Longitudinal and Transverse Young's modulus are obtained by tensile test. Young's moduli without non-woven carbon mat are compared with those with non-woven carbon mat. Longitudinal and Transverse tensile strength are also investigated. Experimental results show that the transverse Young's modulus of composite materials with non-woven carbon mat is about 10% higher than that of composite materials without non-woven carbon mat. Longitudinal tensile strength of composite materials with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

A study on the fracture toughness of dynamic interlaminar for CFRP composite laminates (선진복합재료 적층판의 동적 층간 파괴 인성평가)

  • 김지훈;김영남;양인영;심재기
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.41-48
    • /
    • 1998
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon fiber reinforcement plastics) composite laminates. Composite laminates used in this experimentation are CF/EPOXY and CF/PEEK laminated plates. In the experiments, Split Hopkinson's Bar(SHPE) test was applied to dynamic and notched flexure test. The mode Ⅱ fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reactions at the supported points. As an experimental result, the vibration amplitude of CF/PEEK laminates appear more than that of CF/EPOXY laminates for the J-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimens(CFRP/EPOXY and CF/PEEK) with the in crease of displacement velocity becomes a little greater at a measuring point within the range of measurement.

  • PDF

The Absorbed Energy of Carbon/Epoxy Composite Laminates Subjected to High-velocity impact in Considering the Loss of Projectile Mass (고속충격을 받는 Carbon/Epoxy 복합재 적층판의 충격체 질량손실을 고려한 흡수에너지 예측)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Kim, Young-A;Woo, Kyeongsik
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.349-354
    • /
    • 2013
  • In this paper, we conducted high velocity impact test for Carbon/Epoxy composite laminates and proposed advanced method for predicting the absorbed energy of composite laminates. During high-velocity impact test, we discovered loss of projectile mass macroscopically using high speed camera, thus we calculated the absorbed energy of composite laminates by taking loss of projectile mass into account. We proposed a model for predicting the absorbed energy of composite laminates subjected to high-velocity impact, the absorbed energy was classified into static energy and dynamic energy. The static energy was calculated by the quasi-static perforation equation that is related to the fiber breakage and static elastic energy. The dynamic energy can be divided by the kinetic energy of deformed specimen and fragment mass. Finally, the predicted absorbed energy considering loss of projectile mass was compared with experimental results.

Fatigue Damage of Quasi-Isotropic Composite Laminates (의사등방성 복합재 적층판의 피로손상)

  • 김인권
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.8-16
    • /
    • 1999
  • In this study, when the applied directions of tensile loading is changed fatigue damage of quasi-isotropic composite laminates was discussed. Low cycle fatigue tests of $[0/-60/+60]_s$ laminates and $[+30/-30/90]_s$ laminates were carried out. Material systems used were AS4/Epoxy and AS4/PEEK. The fatigue damage of $[+30/-30/90]_s$ laminates differed from that of $[0/-60/+60]_s$ laminates. The position of delamination generated at AS4/Epoxy and AS4/PEEK $[+30/-30/90]_s$ laminates appeared differently according to the kind of matrix. Critical values of strain energy release rate were obtained by using the strain measured at the initiation of delamination. The experimental results agreed well with the results obtained by the proposed method for determining strain energy release rate.

  • PDF

Characteristics of Thermo-Acoustic Emission from Composite Laminates during Thermal Load Cycles

  • Kim, Young-Bok;Park, Nak-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.391-399
    • /
    • 2003
  • The thermo-acoustic emission (AE) technique has been applied for nondestructive characterization of composite laminates subjected to cryogenic cooling. Thermo-AE events during heating and cooling cycles showed a Kaiser effect. An analysis of the thermo-AE behavior obtained during the 1st heating period suggested a method for determining the stress-free temperature of the composite laminates. Three different thermo-AE types classified by a short-time Fourier transform of AE signals enabled to offer a nondestructive estimation of the cryogenic damages of the composites, in that the different thermo-AE types corresponded to secondary microfracturing in the matrix contacting between crack surfaces and some abrasive contact between broken fiber ends during thermal load cycles.

Low Velocity Impact Characteristics of Glass/phenol Composite Laminates (Glass/phenol 복합적층판의 저속충격 특성)

  • Kim, Jae-Hoon;Kim, Hu-Shik;Park, Byoung-Joon;An, Byoung-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.228-233
    • /
    • 2001
  • It is well known that composite laminates are easily damaged by low velocity impact. The damage of composite laminates subjected to impact loading are occurred matrix cracking, delamination, and fiber breakage. The damage of matrix cracking and delamination are reduced suddenly the compressive strength after impact. This study is to evaluate impact characteristics and the relationship between impact force and inside damage of composite laminates by low velocity impact loading. UT C-scan is used to determine impact damage areas by impact loading.

  • PDF

Influence of Couplings on the Buckling Behavior of Composite Laminates with a Delamination (층간분리로 인한 연계강성이 복합재 적층판의 좌굴거동에 미치는 영향)

  • 김효진;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.354-362
    • /
    • 1995
  • The finite element modeling is used to study the buckling and postbuckling behavior of composite laminates with an embedded delamination. Degenerated shell element and rigid beam element are utilized for the finite element modeling. In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piola-Kirchhoff stress tensor and the Green strain tensor is used. The buckling and postbuckling behavior of composite laminates with a delamination are investigated for various delamination sizes, stacking sequences, and boundary conditions. It is shown that the buckling load and postbuckling behavior of composite laminates depend on the buckling model which is determined by the delamination size, stacking sequence and boundary condition. Also, results show that introduction of couplings can reduce greatly the buckling load.

Experimental Investigation of Low Velocity Impact Characteristics of Composites Laminate Used in the Light Rail Transit (경전철용 복합적층재에 대한 저속충격특성의 실험적 연구)

  • 김재훈;김후식;박병준;조정미;주정수
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.211-216
    • /
    • 2001
  • It is well known that composite laminates are easily damaged by low velocity impact. Low velocity impact damage characteristics and residual compressive strength of composite laminates used in light rail transit are investigated. The damage of composite laminates subjected to impact loading are occurred matrix cracking, delamination, and fiber breakage. The damage of matrix cracking and delamination are reduced suddenly the compressive strength after impact. The objectives of this study is to evaluate impact characteristics and the relationship between impact force and inside damage of composite laminates by low velocity impact loading. UT C-scan is used to determine impact damage areas by impact loading.

  • PDF

Fiber Orientation Effects on the Fracture Process and Acoustic Emission Characteristics of Composite Laminates

  • Woo, Sung-Choong;Kim, Jung-Heun;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.451-458
    • /
    • 2005
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for various composite laminates. Reflection and transmission optical microscopy were used to investigate the damage zone of specimens. AE signals were classified through short time Fourier transform(STFT) as different types: AE signals with a high intensity and high frequency band were due to fiber fracture, while weak AE signals with a low frequency band were due to matrix cracking and/or interfacial cracking. Characteristic feature in the rate of hit-events having high amplitudes showed a procedure of fiber breakages, which expressed the characteristic fracture processes of notched fiber-reinforced plastics with different fiber orientations. As a consequence, the behavior of fracture in the continuous composite laminates could be monitored through nondestructive evaluation(NDE) using the AE technique.