• Title/Summary/Keyword: Composite laminates

Search Result 640, Processing Time 0.027 seconds

Thermal analysis on composite girder with hybrid GFRP-concrete deck

  • Xin, Haohui;Liu, Yuqing;Du, Ao
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1221-1236
    • /
    • 2015
  • Since the coefficients of thermal expansion (CTE) between concrete and GFRP, steel and GFRP are quite different, GFRP laminates with different laminas stacking-sequence present different thermal behavior and currently there is no specification on mechanical properties of GFRP laminates, it is necessary to investigate the thermal influence on composite girder with stay-in-place (SIP) bridge deck at different levels and on different scales. This paper experimentally and theoretically investigated the CTE of GFRP at lamina's and laminate's level on micro-mechanics scales. The theoretical CTE values of laminas and laminates agreed well with test results, indicating that designers could obtain thermal properties of GFRP laminates with different lamina stacking-sequence through micro-mechanics methods. On the basis of the CTE tests and theoretical analysis, the thermal behaviors of composite girder with hybrid GFRP-concrete deck were studied numerically and theoretically on macro-mechanics scales. The theoretical results of concrete and steel components of composite girder agreed well with FE results, but the theoretical results of GFRP profiles were slightly larger than FE and tended to be conservative at a safety level.

Development of Progressive Failure Analysis Method for Composite Laminates based on Puck's Failure Criterion-Damage Mechanics Coupling Theories (Puck 파손기준-손상역학 연계이론을 활용한 적층 복합재료의 점진적 파손해석기법 개발)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.52-60
    • /
    • 2015
  • In the present study, an evaluation method for progressive failure of composite laminates has been proposed based on Puck's failure criterion and damage mechanics. The initial failure (or initiation of crack/delamination) has been assessed using Puck's failure criterion, and the progressive failure (or growth of crack/delamination) has been evaluated using fiber- and matrix-dependent damage variables. Based on Puck's failure criterion-damage mechanics coupling theories, the ABAQUS user-defined subroutine UMAT has been developed in order to analyze the progressive failure of glass/carbon fiber-reinforced composite laminates efficiently. In addition, the developed subroutine has been applied to progressive failure problem of industrial composite laminates, and the analysis results has been compared to experimental results which have been already reported in publications. It was confirmed that the simulation results were coincided well with the reported composite failure results.

Optimization of Microwave Absorbing Performance in Polymer Matrix Composite Laminate (고분자 기기 복합재료 적층판의 전자파 흡수 최적화)

  • 김진봉;김태욱
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.38-46
    • /
    • 2001
  • In this study, An optimization code that can design microwave absorbing composite laminates is developed, and 3-layered microwave absorbing composite laminates are developed by optimizing the thickness of each layer. The layers are 3 different composite laminates. Many variables including lay-up angles of electromagnetically orthotropic composite layer can be considered in this code. The developed laminate is composed of an impedance matching layer of glass/epoxy fabric laminate, a glass/epoxy fabric laminate layer containing aluminum filler and carbon/epoxy fabric laminate layer. Permittivities of the materials are obtained using a network analyzer and a coaxial air line.

  • PDF

Characteristics of Fatigue Life Distribution for Carbon/Epoxy Composite Laminates (탄소섬유/에폭시 복합적층판의 피로수명 분포특성)

  • 김영기;박병준;김재훈;이영신;전제춘
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.119-123
    • /
    • 2000
  • The characteristics of fatigue life distribution for Carbon/epoxy composite laminates was investigated under tension-tension loading(R=0.1). The statistical nature of the fatigue life of the composite materials was analyzed by Weibull, normal, lognormal distributions As a result, it was observed that the correlation between the experimental results and the theoretical predictions for the fatigue life is good. The distribution of the static ultimate strength has the characteristic of lognormal distribution and distribution of the fatigue life has characteristics of the weibull distribution.

  • PDF

Monitoring of Fatigue Damage of Composite Laminates Using Embedded Intensity-Based Optical Fiber Sensors (광강도형 광섬유 센서를 이용한 복합재 적충판의 피로손상 감시)

  • 이동춘;이정주;서대철
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.124-127
    • /
    • 2000
  • In this study, a technique for monitoring of fatigue damage of composite laminates by measuring the stiffness change using embedded intensity-based optical fiber sensors was investigated. Firstly, the underlying measurement principle and structure of intensity-based sensors and then a simple stiffness conversion process was explained. The monitoring technique was evaluated by fatigue tests of composite laminates with an embedded intensity-based sensor. From the test results, the response of the intensity-based sensor showed good correlation with that of surface mounted extensometer. Therefore, it can be concluded that the intensity-based sensors have good potential for the monitoring of fatigue damage of composite structures under fatigue loading. In addition, it could be confirmed that the intensity-based sensors have higher resistance to fatigue than the commercial electrical strain gauge.

  • PDF

Simple Method of Analysis for Preliminary Design of the Composite Laminated Primary Structures for Civil Construction

  • Kim, Duk-Hyun-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.121-126
    • /
    • 1991
  • In his recent book, D.H. Kim proposes to use the quasi-isotropic constants by Tsai for the preliminary design of the composite primary structures for the civil construction. Such structures generally require a large number of laminae layers. Simple equations which can predict "exact" values of the buckling strength, the natural frequency of vibration, and the deflection for the special orthotropic laminates are presented. Many laminates with certain orientations lave decreasing values of B$\_$16/ and B$\_$26/ as the number of plies increases. Such laminates, with D$\_$16/=D$\_$26/\longrightarrow0, including the laminates with anti-symmetric configurations can be solved by the same equation for the special orthotropic laminates. If the quasi-isotropic constants are used, the equations for the Isotropic plates can be used. Use of some coefficients can produce "exact" value for laminates with such configuration.

  • PDF

Prediction and Analysis of Fracture Strength for Surface Flawed Laminates (표면 손상을 입은 적층판의 강도 예측 및 분석)

  • Choi D. H.;Hwang W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.275-278
    • /
    • 2004
  • In this paper, the fracture strength of the surface damaged laminates was predicted by applying the fracture strengths of the unflawed and flawed laminates. For prediction, the theoretical equation about the fracture strength of laminates was simplified applying classical laminate theory and was applied to the surface damaged laminates. Lagace's and Tsai's experimental data were used for verifying the theoretical equation. Moreover, to verify the theoretical prediction, an experiment was performed. Surface unflawed laminate and flawed laminates were fabricated and the experiments were made and these results were compared with theoretical predictions. The specimens' fiber direction was same to the tensile direction and the theoretical predictions and the experimental results were showed good agreement. Therefore, by this equation, the fracture strength of structures made of composites will be able to be predicted when the surface of the structures was damaged.

  • PDF

Permittivities of the E-Glass Fabric/Epoxy Composite Laminates Containing Carbon Black Dispersion (카본 블렉을 함유한 유리섬유 직조 복합재 적층판의 유전율)

  • 김진봉;정재한;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.56-59
    • /
    • 2002
  • This paper presents a study on the permittivities of the E-glass fabric/epoxy composite laminates containing carbon black dispersions at microwave frequency. Measurement showed that the complex permittivities of the composites depend strongly on the natures and concentrations of the carbon black dispersion. A new scheme to obtain a mixing law for the estimation of complex permittivity is proposed. The experimental values of the complex permittivities were compared to those calculated. Simultaneously, the complex permittivity of carbon black itself was also calculated by the scheme.

  • PDF

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

Effect of Temperature on Low Velocity Impact Characteristics of Composite Laminates (복합적층재의 온도에 의한 저속충격특성)

  • 한영욱;김후식;김재훈;이영신;조정미;박병준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.93-96
    • /
    • 2002
  • Instrumented impact tests and compression-after-impact(CAI) tests have been used to evaluate the effect of temperature on the low-velocity impact characteristics of phenolic matrix composites reinforced with various woven glass fabric. Impact characteristics and damage area in laminates are evaluated by C-scan. It is shown that the extent of damage and residual compressive strength of the laminates vary with energy level and impact test temperature. The damage area increases with increasing impact energy and temperature. All these observations indicate reduced impact damage resistance and damage tolerance of the laminates at elevated temperature.

  • PDF