• Title/Summary/Keyword: Composite lognormal-Pareto distribution

Search Result 4, Processing Time 0.022 seconds

Estimation on composite lognormal-Pareto distribution based on doubly censored samples (결합 로그노말-파레토 분포에서 추출된 양쪽 중도 절단된 표본을 이용한 모수추정)

  • Lee, Kwang-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.171-177
    • /
    • 2011
  • With the development of the actuarial and insurance industries, the distributions of the insurance payments data are deeply studied by many authors. It is known that theses types of distribution are very highly positively skewed and have a long thick upper tail such as Pareto or lognormal distribution. In 2005, Cooray and Ananda proposed a new model which is composed lognormal distribution and Pareto distribution. They said it as composite lognormal-Preto distribution. They showed that the proposed distribution was better fitted than lognormal or Pareto distribution. On the other hand many agreements about the insurance payment have some options for a trivially small payment or extremely large one because of the limits of total payment. Appling these cases, in this paper we consider the parameter estimation on the composite lognormal-Pareto distribution based on doubly censored samples.

A Robust Estimation for the Composite Lognormal-Pareto Model

  • Pak, Ro Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.4
    • /
    • pp.311-319
    • /
    • 2013
  • Cooray and Ananda (2005) proposed a composite lognormal-Pareto model to analyze loss payment data in the actuarial and insurance industries. Their model is based on a lognormal density up to an unknown threshold value and a two-parameter Pareto density. In this paper, we implement the minimum density power divergence estimation for the composite lognormal-Pareto density. We compare the performances of the minimum density power divergence estimator (MDPDE) and the maximum likelihood estimator (MLE) by simulations and an example. The minimum density power divergence estimator performs reasonably well against various violations in the distribution. The minimum density power divergence estimator better fits small observations and better resists against extraordinary large observations than the maximum likelihood estimator.

Time-varying modeling of the composite LN-GPD (시간에 따라 변화하는 로그-정규분포와 파레토 합성 분포의 모형 추정)

  • Park, Sojin;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.109-122
    • /
    • 2018
  • The composite lognormal-generalized Pareto distribution (LN-GPD) is a mixture of right-truncated lognormal and GPD for a given threshold value. Scollnik (Scandinavian Actuarial Journal, 2007, 20-33, 2007) shows that the composite LN-GPD is adequate to describe body distribution and heavy-tailedness. This paper considers time-varying modeling of the LN-GPD based on local polynomial maximum likelihood estimation. Time-varying model provides significant detailed information of time dependent data, hence it can be applied to disciplines such as service engineering for staffing and resources management. Our work also extends to Beirlant and Goegebeur (Journal of Multivariate Analysis, 89, 97-118, 2004) in the sense of losing no data by including truncated lognormal distribution. Our proposed method is shown to perform adequately in simulation. Real data application to the service time of the Israel bank call center shows interesting findings on the staffing policy.

New composite distributions for insurance claim sizes (보험 청구액에 대한 새로운 복합분포)

  • Jung, Daehyeon;Lee, Jiyeon
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.363-376
    • /
    • 2017
  • The insurance market is saturated and its growth engine is exhausted; consequently, the insurance industry is now in a low growth period with insurance companies that face a fierce competitive environment. In such a situation, it will be an important issue to find the probability distributions that can explain the flow of insurance claims, which are the basis of the actuarial calculation of the insurance product. Insurance claims are generally known to be well fitted by lognormal distributions or Pareto distributions biased to the left with a thick tail. In recent years, skew normal distributions or skew t distributions have been considered reasonable distributions for describing insurance claims. Cooray and Ananda (2005) proposed a composite lognormal-Pareto distribution that has the advantages of both lognormal and Pareto distributions and they also showed the composite distribution has a higher fitness than single distributions. In this paper, we introduce new composite distributions based on skew normal distributions or skew t distributions and apply them to Danish fire insurance claim data and US indemnity loss data to compare their performance with the other composite distributions and single distributions.