• Title/Summary/Keyword: Composite mechanics

Search Result 952, Processing Time 0.025 seconds

Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite

  • Mohammadimehr, M.;Mohammadi-Dehabadi, A.A.;Akhavan Alavi, S.M.;Alambeigi, K.;Bamdad, M.;Yazdani, R.;Hanifehlou, S.
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.405-422
    • /
    • 2018
  • In this research, experimental tensile test and manufacturing of carbon nanotube reinforced composite beam (CNTRC) is presented. Also, bending, buckling, and vibration analysis of CNTRC based on various beam theories such as Euler-Bernoulli, Timoshenko and Reddy beams are considered. At first, the experimental tensile tests are carried out for CNTRC and composite beams in order to obtain mechanical properties and then using Hamilton's principle the governing equations of motion are derived for Euler Bernoulli, Timoshenko and Reddy theories. The results have a good agreement with the obtained results by similar researches and it is shown that adding just two percent of carbon nanotubes increases dimensionless fundamental frequency and critical buckling load as well as decreases transverse deflection of composite beams. Also, the influences of different manufacturing processes such as hand layup and industrial methods using vacuum pump on composite properties are investigated. In these composite beams, glass fibers used in an epoxy matrix and for producing CNTRC, CNTs are applied as reinforcement particles. Applying two percent of CNTs leads to increase the mechanical properties and increases natural frequencies and critical buckling load and decreases deflection. The obtained natural frequencies and critical buckling load by theoretical method are higher than other methods, because there are some inevitable errors in industrial and hand layup method. Also, the minimum deflection occurs for theoretical methods, in bending analysis. In this study, Young's and shear modulli as well as density are obtained by experimental test and have not been used from the results of other researches. Then the theoretical analysis such as bending, buckling and vibration are considered by using the obtained mechanical properties of this research.

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying;He, Yuhao;Lei, Jincheng;Liu, Zishun;Swaddiwudhipong, Somsak
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.605-616
    • /
    • 2014
  • When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

Detection of delamination damage in composite beams and plates using wavelet analysis

  • Bombale, B.S.;Singha, M.K.;Kapuria, S.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.699-712
    • /
    • 2008
  • The effectiveness of wavelet transform in detecting delamination damages in multilayered composite beams and plates is studied here. The damaged composite beams and plates are modeled in finite element software ABAQUS and the first few mode shapes are obtained. The mode shapes of the damaged structures are then wavelet transformed. It is observed that the distribution of wavelet coefficients can identify the damage location of beams and plates by showing higher values of wavelet coefficients at the position of damage. The effectiveness of the method is studied for different boundary conditions, damage location and size for single as well as multiple delaminations in composite beams and plates. It is observed that both discrete wavelet transform (DWT) and continuous wavelet transform (CWT) can detect the presence and location of the damaged region from the mode shapes of the structures. DWT may be used to approximately evaluate the size of the delamination area, whereas, CWT is efficient to detect smaller delamination areas in composites.

Dynamic analysis of a rotating tapered composite Timoshenko shaft

  • Zahi Rachid;Sahli Abderahmane;Moulgada Abdelmadjid;Ziane Noureddine;Refassi Kaddour
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.429-441
    • /
    • 2023
  • This research presents an advanced finite element formulation for analyzing the vibratory behaviour of tapered composite shaft rotors, taking into account the impact of the draft angle on the stiffness of the composite shaft laminate. The vibration response of the shaft rotating around its axis is studied using both the finite element hierarchical method and the classical finite element formulation, based on the theory of transverse shear deformation, rotary inertia, gyroscopic effect, and coupling effect due to the stratification of the composite layers of the shaft. The study also includes the development of a program to calculate the Eigen frequencies and critical speeds of the system, and the obtained results are compared with those available in the literature. This research provides valuable insights into the vibratory behaviour of tapered composite shaft rotors and can be useful for designing and optimizing such structures in various industrial applications.

Radial vibration behaviors of cylindrical composite piezoelectric transducers integrated with functionally graded elastic layer

  • Wang, H.M.;Wei, Y.K.;Xu, Z.X.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.753-765
    • /
    • 2011
  • The radial vibration behaviors of a circular cylindrical composite piezoelectric transducer (CPT) are investigated. The CPT is composed of a piezoelectric ring polarized in the radial direction and an elastic ring graded in power-law variation form along the radial direction. The governing equations for plane stress state problem under the harmonic excitation are derived and the exact solutions for both piezoelectric and functionally graded elastic rings are obtained. The characteristic equations for resonant and anti-resonant frequencies are established. The presented methodology is fit to carry out the parametric investigation for composite piezoelectric transducers (CPTs) with arbitrary thickness in radial direction. With the aid of numerical analysis, the relationship between the radial vibration behaviors of the cylindrical CPT and the material inhomogeneity index of the functionally graded elastic ring as well as the geometric parameters of the CPTs are illustrated and some important features are reported.

Development of Progressive Failure Analysis Method for Composite Laminates based on Puck's Failure Criterion-Damage Mechanics Coupling Theories (Puck 파손기준-손상역학 연계이론을 활용한 적층 복합재료의 점진적 파손해석기법 개발)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.52-60
    • /
    • 2015
  • In the present study, an evaluation method for progressive failure of composite laminates has been proposed based on Puck's failure criterion and damage mechanics. The initial failure (or initiation of crack/delamination) has been assessed using Puck's failure criterion, and the progressive failure (or growth of crack/delamination) has been evaluated using fiber- and matrix-dependent damage variables. Based on Puck's failure criterion-damage mechanics coupling theories, the ABAQUS user-defined subroutine UMAT has been developed in order to analyze the progressive failure of glass/carbon fiber-reinforced composite laminates efficiently. In addition, the developed subroutine has been applied to progressive failure problem of industrial composite laminates, and the analysis results has been compared to experimental results which have been already reported in publications. It was confirmed that the simulation results were coincided well with the reported composite failure results.

A novel meso-mechanical model for concrete fracture

  • Ince, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.91-112
    • /
    • 2004
  • Concrete is a composite material and at meso-level, may be assumed to be composed of three phases: aggregate, mortar-matrix and aggregate-matrix interface. It is postulated herein that although non-linear material parameters are generally used to model this composite structure by finite element method, linear elastic fracture mechanics principles can be used for modelling at the meso level, if the properties of all three phases are known. For this reason, a novel meso-mechanical approach for concrete fracture which uses the composite material model with distributed-phase for elastic properties of phases and considers the size effect according to linear elastic fracture mechanics for strength properties of phases is presented in this paper. Consequently, the developed model needs two parameters such as compressive strength and maximum grain size of concrete. The model is applied to three most popular fracture mechanics approaches for concrete namely the two-parameter model, the effective crack model and the size effect model. It is concluded that the developed model well agrees with considered approaches.

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Active control of delaminated composite shells with piezoelectric sensor/actuator patches

  • Nanda, Namita;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.211-228
    • /
    • 2012
  • Present study deals with the development of finite element based solution methodology to investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors and actuators. The formulation is based on first order shear deformation theory and an eight-noded isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of delaminated composite shells in a closed loop employing Newmark's time integration scheme. The validity of the numerical model is demonstrated by comparing the present results with those available in the literature. A number of parametric studies such as the locations of sensor/actuator patches, delamination size and its location, radius of curvature to width ratio, shell types and loading conditions are carried out to understand their effect on the transient response of piezoceramic delaminated composite shells.

A study of fracture of a fibrous composite

  • Mirsalimov, Vagif M.;Hasanov, Shahin H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.585-598
    • /
    • 2020
  • We develop design model within which nucleation and propagation of crack in a fibrous composite is described. It is assumed that under loading, crack initiation and fracture of material happens in the composite. The problem of equilibrium of a composite with embryonic crack is reduced to the solution of the system of nonlinear singular integral equations with the Cauchy type kernel. Normal and tangential forces in the crack nucleation zone are determined from the solution of this system of equations. The crack appearance conditions in the composite are formed with regard to criterion of ultimate stretching of the material's bonds. We study the case when near the fiber, the binder has several arbitrary arranged rectilinear prefracture zones and a crack with interfacial bonds. The proposed computational model allows one to obtain the size and location of the zones of damages (prefracture zones) depending on geometric and mechanical characteristics of the fibrous composite and applied external load. Based on the suggested design model that takes into account the existence of damages (the zones of weakened interparticle bonds of the material) and cracks with end zones in the composite, we worked out a method for calculating the parameters of the composite, at which crack nucleation and crack growth occurs.