• Title/Summary/Keyword: Compositional Convection

Search Result 6, Processing Time 0.027 seconds

On Compositional Convection in Near-Eutectic Solidification System Cooled from a Bottom Boundary

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.868-873
    • /
    • 2017
  • Natural convection is driven by the compositional buoyancy in solidification of a binary melt. The stabilities of convection in a growing mushy layer were analyzed here in the time-dependent solidification system of a near-eutectic melt cooled impulsively from below. The linear stability equations were transformed to self-similar forms by using the depth of the mushy layer as a length scale. In the liquid layer the stability equations are based on the propagation theory and the thermal buoyancy is neglected. The critical Rayleigh number for the mushy layer increases with decreasing the Stefan number and the Prandtl number. The critical conditions for solidification of aqueous ammonium chloride solution are discussed and compared with the results of the previous model for the liquid layer.

Characteristics and Stability of Compositional Convection in Binary Solidification with a Constant Solidification Velocity (일정한 응고속도를 갖는 2성분 응고에서 조성 대류의 특성 및 안정성)

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.199-204
    • /
    • 2014
  • In binary solidification compositional convection in a porous mushy layer influences the quality of the final products. We consider the mushy layer solidifying from below with a constant solidification velocity. The disturbance equations for the mushy layer are derived using linear stability theory. The basic-state temperature fields and the distribution of the porosity in the mushy layer are investigated numerically. When the superheat is large, the thickness of the mushy layer is relatively small compared to the thickness of the thermal boundary layer. With decreasing the superheat the critical Rayleigh number based on the thickness of the mushy layer increases and the mushy layer becomes stable to the compositional convection. The critical Rayleigh number obtained from the continuity conditions of temperature and heat flux at the mush-liquid interface is smaller than that from the isothermal condition at the upper boundary of the mushy layer.

Linear Stability of Compositional Convection in a Mushy Layer during Solidification of Ammonium Chloride Solution (염화암모늄 수용액 응고시에 Mush 층에서 성분적 대류의 선형안정성)

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • The onset of convection in a mushy layer is analyzed by using linear stability theory in time-dependent solidification of a binary melt. A simplified model of a near-eutectic mush, in which the mush is assumed to be a porous block, is used and the propagation theory is applied to determine the critical conditions for the onset of convection. The present critical Rayleigh number is higher than the existing experimental result and also theoretical results obtained by considering the mushy layer with an overlying liquid layer. The constant pressure (permeable) condition applied on the mush-liquid interface produces a lower critical Rayleigh number, which is closer to the experimental results of aqueous ammonium chloride solution, compared with the impermeable condition.

Compositional homogeneity of potassium lithium niobate crystals grown by micro pulling down method ($\mu\textrm{m}$-PD법에 의해 육성한 KLN 단결정의 조성적 균일성)

  • Dae-Ho Yoon;Tsuguo Fukuda
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.405-410
    • /
    • 1994
  • KLN crystals were grown with various melt compositions by $\mu\textrm{m}$-PD method. The composition of KLN crystals was determined by DTA and X-ray diffraction measurements. It can be obtained that KLN micro crystals have a nearly homogeneous composition along the growth axis because of the absence of convection in melt growth interface.

  • PDF

Segregation Mechanism in Si1-xGex Single Crystal Fiber Growth by Micro-pulling Down Method

  • Uda, Satoshi;Kon, Junichi;Shimamura, Kiyoshi;Fukuda, Tsuguo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.399-421
    • /
    • 1996
  • (1) The solute distribution mechanism was analyzed for the Si0.95Ge0.05 single crystal fiber by u-PD method. (2) The steady-state solutions were obtained for the molten zone and the capillary zone. (3) The effect of the convection in the molten zone on partitioning was not significant for many cases. (4) Intermediate transient rise of Ge was shown by the sudden change of the growth velocity or molten zone height. (5) Periodic compositional modulation can be designed by using the intermediate transient.

  • PDF

A Fluid inclusion study of the Sannae granite and the associated Sannae W-Mo deposit, Southeastern Kyongsang Basin (경상분지 남동부의 산내화강암과 산내 W-MO 광상에 관한 유체포유물 연구)

  • 양경희;이준동
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.46-55
    • /
    • 1999
  • Fluid inclusions in granite and hydrothermal quartz indicate that three fluids have affected the Sannae granite. The earliest fluid is represented by three-phase aqueous fluid inclusions with high salinity (38 to 46 wt.% NaCl equiv.). It was exsolves from a crystallizing melt and trapped at a relatively high-pressure condition. The secong fluid is represented by two-phase aqueous fluid inclusion with low entectic temperatures (< $-40^{\circ}C$). low- to moderate salinity (3 to 24.0 wt.% NaCl equiv.) and high homogenization temperatures$ ($309^{\circ}C$$473^{\circ}C$)($. This fluid was trapped at higher pressures than 300-500 bars and precipitated molybdenite and wolframite in quartz veins. It was probably generted by fluid-host rock interactions since they show a wide range of salinity within a narrow range of homogenization temperatures. The final fluid is represented by an aquenous fluid boiling that separated into high-salinity (34-38 wt.% NaCl equiv.) and low-salinity fluid (0 to 8.7 wt.%) at $303-376^{\circ}C$ and 50-150 bars. These boiling fluids precipitated euhedral quartz in miarolitic cavities. The compositions of the final fluid was rather complex in the $H_2$O-NaCl-KCI-$FeCl_2$ system. The Sannae granite was a locus for repeated fluid events including magmatic fluids during the final stage of crystallization, the convection of hydrothermal fluids causing a fluid ascending, fluid boiling, and the local W-Mo mineralization and formation of miarolitic cavities due to thermal, tectonic and compositional properties of the felsic granite.

  • PDF