• Title/Summary/Keyword: Compressive loading

Search Result 857, Processing Time 0.025 seconds

Eccentrically compressive behaviour of RC square short columns reinforced with a new composite method

  • Zhang, Fan;Lu, Yiyan;Li, Shan;Zhang, Wenlong
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.95-108
    • /
    • 2018
  • A new composite reinforced method, namely self-compacting concrete filled circular CFRP-steel jacketing, was proposed in this paper. Experimental tests on eight RC square short columns reinforced with the new composite reinforced method and four RC square short columns reinforced with CFS jackets were conducted to investigate their eccentrically compressive behaviour. Nine reinforced columns were subjected to eccentrically compressive loading, while three reinforced columns were subjected to axial compressive loading as reference. The parameters investigated herein were the eccentricity of the compressive loading and the layer of CFRP. Subsequently, the failure mode, ultimate load, deformation and strain of these reinforced columns were discussed. Their failure modes included the excessive bending deformation, serious buckling of steel jackets, crush of concrete and fracture of CFRP. Moreover, these reinforced columns exhibited a ductile failure globally. Both the eccentricity of the compressive loading and the layer of CFRP had a significant effect on the eccentrically compressive behaviour of reinforced columns. Finally, formulae for the evaluation of the ultimate load of reinforced columns were proposed. The theoretical formulae based on the ultimate equilibrium theory provided an effective, acceptable and safe method for designers to calculate the ultimate load of reinforced columns under eccentrically compressive loading.

Critical Compressive Strain of Concrete under a Long-Term Deformation Effect Part I. Experiments

  • Nghia, Tran Tuan;Chu, In-Yeop;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This paper focuses on the effect of creep on the critical compressive strain (CCS) of concrete. The strain of concrete corresponding to the peak compressive stress is crucial in the selection of the ultimate yield strength of the reinforcing bar used in reinforced concrete columns. Among the various influencing factors, such as the creep, shrinkage, loading rate and confinement, the effect of creep and shrinkage is the most significant. So far, investigations into how these factors can affect the CCS of concrete have been rare. Therefore, to investigate the effect of creep and shrinkage on CCS, an experimental (part I) and a parametric study (part II) were conducted, as presented in these papers (part I considers creep effect, part II considers effect of creep and shrinkage). In part I, experiments pertaining to the loading age, loading rate, loading duration and loading and creep levels were conducted to study the effect of these variables on the CCS of concrete. It was found that the effects of the loading rate, loading age, and level and duration on the CCS of concrete were negligible. However, it is very important to consider the effect of creep.

The Effect of Intermittent Compressive Loading to Growth of Pre-osteoblast Cells (간헐적인 압축하중이 조골세포주 성장에 미치는 영향)

  • Choi, Sung-Kyu;Park, Jeong-Hun;Lee, Seung-Jae;Lee, In-Hwan;Kang, Sang-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.153-159
    • /
    • 2010
  • Recently, it has been reported that mechanical stimulation takes a role in improving cell growth. Also, became generally known that skeletal system as bone or cartilage tissues take influence of compression loading. In this study, we fabricated a custom-made bioreactor and analyzed that conditions of compressive loading would influence cell growth. To compare the effect of intermittent compressive loading on cell-encapsulated agarose scaffold, we cultured preosteoblast cell (MC3T3-E1 cells) statically and dynamically. And dynamic culture conditions were produced by changing parameters such as the iteration time and interval delay time. Also, cellencapsulated agarose scaffold were subjected to 10 % dynamic compressive strain at 1㎐ frequency for 7 days. After cell culture, cell proliferation was assessed with PI stain assay for fluorescence images and flow cytometry (FACS).

Dynamic Deformation Behavior of Aluminum Alloys Under High Strain Rate Compressive/Tensile Loading

  • Lee, Ouk-Sub;Kim, Guan-Hee;Kim, Myun-Soo;Hwang, Jai-Sug
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.787-795
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A1606 IT-6 and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Statistical analysis of effects of test conditions on compressive strength of cement solidified radioactive waste

  • Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.876-883
    • /
    • 2023
  • Radioactive waste should be solidified before being disposed of in the repository to eliminate liquidity or dispersibility. Cement is a widely used solidifying media for radioactive waste, and cement solidified waste should satisfy the minimum compressive strength of the waste acceptance criteria of a radioactive repository. Although the compressive strength of waste should be measured by the test method provided by the waste acceptance criteria, the method differs depending on the operating repository of different countries. Considering the measured compressive strength changes depending on test conditions, the effect of test conditions should be analyzed to avoid overestimation or underestimation of the compressive strength during disposal. We selected test conditions such as the height-to-diameter ratio, loading rate, and porosity as the main factors affecting the compressive strength of cement solidified radioactive waste. Owing to the large variance in measured compressive strength, the effects of the test conditions were analyzed via statistical analyses using parametric and nonparametric methods. The results showed that the test condition of the lower loading rate, with a height-to-diameter ratio of two, reflected the actual cement content well, while the porosity showed no correlation. The compressive strength assessment method that reflects the large variance of strengths was suggested.

Effect of axial loading conditions and confinement type on concrete-steel composite behavior

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.95-109
    • /
    • 2020
  • This paper aims to analytically study the effect of loading conditions and confinement type on the mechanical properties of the concrete-steel composite columns under axial compressive loading. The axial loading is applied to the composite columns in the two ways; only on the concrete core, and on the concrete core and steel tube simultaneously, which are called steel tube-confined concrete (STCC) and concrete-filled steel tube (CFST) columns, respectively. In addition, the confinement is investigated in the three types of passive, short-term active and long-term active confinement. Nonlinear finite element 3D models for analyzing these columns are developed using the ABAQUS program, and then these models are verified with respect to the recent experimental results reported by the authors on the STCC and CFST columns experiencing active and passive confinements. Axial and lateral stress-strain curves as well as the failure mode for qualitative verification, and compressive strength for quantitative verification are considered. It is found that there is a good consistency between the finite element analysis results and the experimental ones. In addition, a parametric study is performed to evaluate the effect of axial loading type, prestressing ratio, concrete compressive strength and steel tube diameter-to-wall thickness ratio on the compressive behavior of the composite columns. Finally, the compressive strength results of CFST specimens obtained via the finite element analysis are compared with the values specified by the international codes and standards including EC4, CSA, ACI-318, and AISC, with the results showing that ACI-318 and AISC underestimate the compressive strength of the composite columns, while EC4 and CSA codes present overestimated values.

Fundamental Comparison of Moduli Values in Asphalt Concrete Mixture due to Various Sinusoidal Loadings (다양한 Sinusoidal 하중을 받는 아스팔트콘크리트 혼합물의 Moduli 값에 대한 비교연구)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.39-48
    • /
    • 2006
  • A laboratory investigation was performed to estimate the moduli values of asphalt concrete mixture due to various sinusoidal loadings in compression and tension. Total five modes of loading were used under five testing temperatures of 32, 50, 68, 86, and $104^{\circ}F$ (0, 10, 20, 30, and $40^{\circ}C$); repeated compressive haversine loading with rest period, repeated tensile haversine loading with rest period, cyclic compressive loading, cyclic tensile loading, and alternate tensile-compressive loadings. The test results showed that, due to the repeated haversine loading with rest period, asphalt concrete demonstrated similar moduli in tension and compression at low temperatures,(0 and $10^{\circ}C$) while those moduli were different at high temperatures (20, 30, and $40^{\circ}C$). At high temperatures the compressive moduli were always higher than the tensile moduli. The uniaxial tensile moduli were higher than indirect tensile moduli at low temperatures. However, those moduli were similar at high temperatures. In uniaxial cyclic tension, compression, and alternate tension-compression tests, compressive moduli were higher than tensile and alternate tensile-compressive moduli throughout the temperatures. Generally, the moduli from the repeated haversine loading with rest period were always lower than those from the cyclic sinusoidal loading. The difference in moduli from the repeated haversine loading with rest period and cyclic sinusoidal loading becomes more significant as the temperature decreases.

Comparative Study Between Geopolymer and Cement Waste Forms for Solidification of Corrosive Sludge

  • Lee, Juhyeok;Kim, Byoungkwan;Kang, Jaehyuk;Kang, Jaeeun;Kim, Won-Seok;Um, Wooyong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.465-479
    • /
    • 2020
  • Two waste forms, namely cement and geopolymer, were investigated and tested in this study to solidify the corrosive sludge generated from the surface and precipitates of the tubes of steam generators in nuclear power plants. The compressive strength of the cement waste form cured for 28 days was inversely proportional to waste loading (24.4 MPa for 0wt% to 2.7 MPa for 60wt%). The corrosive sludge absorbed the free water in the hydration reaction to decrease the cementation reaction. When the corrosive sludge waste loading increased to 60wt%, the cement waste form showed decreased compressive strength (2.7 MPa), which did not satisfy the acceptance criteria of the repository (3.45 MPa). Meanwhile, the compressive strength of the geopolymer waste form cured for 7 days was proportional to waste loading (23.6 MPa for 0wt% to 31.9 MPa for 40wt%). The corrosive sludge absorbed the free water in the geopolymer when the water content decreased, such that a compact geopolymer structure could be obtained. Consequently, the geopolymer waste forms generally showed higher compressive strengths than cement waste forms.

In Situ Mechanical Response of Bovine Humeral Head Articular Cartilage in a Physiological Loading Environment (생리학적인 하중 조건에서 소 상완골 연골의 기계적 특성)

  • Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.145-150
    • /
    • 2008
  • One of the unresolved questions in articular cartilage biomechanics is the magnitude of the dynamic modulus and tissue compressive strains under physiological loading conditions. The objective of this study was to characterize the dynamic modulus and compressive strain magnitudes of bovine articular cartilage at physiological compressive stress level and loading frequency. Four bovine calf shoulder joints (ages 2-4 months) were loaded in Instron testing system under load control, with a load amplitude up to 800 N and loading frequency of 1 Hz, resulting in peak engineering stress amplitude of ${\sim}5.8\;MPa$. The corresponding peak deformation of the articular layer reached ${\sim}27%$ of its thickness. The effective dynamic modulus determined from the slope of stress versus strain curve was ${\sim}23\;MPa$, and the phase angle difference between the applied stress and measured strain which is equivalent to the area of the hystresis loop in the stress-strain response was ${\sim}8.3^{\circ}$. These results are representative of the functional properties of articular cartilage in a physiological loading environment. This study provides novel experimental findings on the physiological strain magnitudes and dynamic modulus achieved in intact articular layers under cyclical loading conditions.