• Title/Summary/Keyword: Concrete breakout capacity

Search Result 16, Processing Time 0.028 seconds

Shear Resistance of CIP Anchors under Dynamic Loading: Unreinforced Anchor (선설치앵커의 동적 전단하중에 대한 저항강도: 비보강 앵커)

  • Park, Yong Myung;Kang, Moon Ki;Kim, Dong Hyun;Lee, Jong Han;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • The Concrete Capacity Design(CCD) method has been used in the design of anchor since 2001 and Korean design code specify that concrete breakout capacity of CIP anchor under seismic load shall be taken as 75% of static capacity. In this study, an experimental study was performed to evaluate the concrete breakout capacity of unreinforced CIP anchors under dynamic shear force. For the purpose, three static and dynamic shear-loading tests were conducted using 20mm diameter anchors, respectively. The edge distance of 120mm was considered in the tests. In the dynamic tests, 15 cycles pulsating load with 1Hz speed was applied and the magnitude of loading step was increased until concrete breakout failure occurs. From the tests, the concrete breakout capacity under dynamic shear loading showed nearly same capacity by static loading.

A Study on the Concrete Breakout Capacity Evaluation of Medium-to-Large size CIP Anchor Bolts under Tension Loading (인장하중을 받는 중대형급 선설치 앵커볼트의 콘크리트파괴강도 평가를 위한 연구)

  • Park, Yong-Myung;Jeon, Myeong-Hui;Lee, Kun-Jun;Kim, Cheol-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.493-501
    • /
    • 2011
  • The $45^{\circ}$cone failure theory has been used for concrete anchor bolt design, but the CCD (concrete capacity design) method was adopted as a new design method in 2000. The method was allowed to be used, however, only for anchors with a diameter of less than 50 mm and an embedment depth of less than 635 mm because it is based on the experiment results from medium-sized to small anchor bolts. Therefore, it is necessary to develop a rational concrete breakout capacity equation for medium-sized to large anchor bolts. In this study, tension tests on an M56 cast-in-place single anchor bolt with an effective embedment depth of 400-450 mm were carried out for the five test specimens. Based on the test results together with the other recent test results, the applicability of the concrete breakout capacity equation in the current design code to the large to medium-sized anchor bolts with an embedment depth of 280-1,200 mm was estimated.

A Study on Effect of Anchor Plate on Concrete Breakout Capacity and Elasticity-Based Analysis Model of Anchor Plate (앵커플레이트가 콘크리트 파괴 강도에 미치는 영향 및 탄성기반 해석 모델에 대한 연구)

  • Shin, Ji-Uk;You, Young-Chan;Choi, Ki-Seon;Kim, Ho-Ryong;Kim, Jun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.381-388
    • /
    • 2013
  • This study presents that effect of anchor plate on concrete breakout strength was evaluated. The addition of the anchor plate is to improve the concrete breakout capacity for a single anchor system in a thin-walled concrete panel (Insulated concrete sandwich wall panel). In this study, an elasticity-based simplified model was developed and used to predict effect on the anchor plate. Flexural stresses of the plate with respect to the concrete breakout strength obtained from CCD (Capacity Concrete Design) approach were compared with the test results. Through the test results, while the concrete breakout strength was improved due to increment of the width and thickness of the anchor plate, improvement of the strength was steadily declined. In addition, the It was observed that the analytical and experimental flexure of the anchor plate was comparatively in good agreement using the simplified elastic analysis model.

A Study on the Concrete Breakout Capacity of CIP Anchor Bolts under Shear Loading (전단력을 받는 선설치 앵커볼트의 콘크리트 파열파괴강도 평가 연구)

  • Park, Yong-Myung;Jeon, Myeong-Hui;Choi, Myung-Kuk;Kim, Cheol-Hwan;Kim, In-Gi
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.207-215
    • /
    • 2012
  • The 45-degree cone failure theory has been used in concrete anchor bolts design under shear loading, but the CCD (Concrete Capacity Design) method was adopted as a new design method since 2000. However, the method was allowed only for anchor diameters of less than 50mm because it is based on the experimental results of small size anchor bolts. Therefore, it is necessary to develop a rational concrete breakout capacity equation for medium-to-large size anchor bolts with large edge distance. In this study, shear tests on M56 cast-in-place single anchor bolt with edge distance of 350mm were performed using four test specimens. Based on the test results and findings of existing studies, a new equation for the breakout capacity of anchor bolts under shear loading with edge distance of up to 750mm was proposed.

Evaluation of Concrete Cone Breakout Strength of Expansion Anchors (익스팬션 앵커의 콘크리트 콘 파괴강도 평가)

  • Kim, Sung Yong;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.649-660
    • /
    • 2003
  • The paper presents an evaluation of the tensile strength of the expansion anchor that can cause failure in the concrete based on the design of the anchorage. Tests of the heavy-duty anchor and the wedge anchor that are domestically manufactured and installed in plain concrete members are conducted to probe the effects of the embedded depth, concrete strength, and anchors spacing. The design of post-installed steel anchors is presented using the Concrete Capacity Design (CCD) approach. The CCD method is applied to predict the concrete failure load of the expansion anchor in plain concrete under monotonic loading for important applications. The concrete tension capacity of the fastenings with heavy-duty anchors and wedge anchors in plain concrete predicted using the CCD method is compared with the test results. For the CCD method, a normalization coefficient of 9.94 is appropriale for the nominal concrete breakout strength of an anchor or a group of wedge anchors in tension. On the other hand, a normalization coefficient of 11.50 is appropriate for the nominal concrete breakout strength of an anchor or a group of heavy-duty anchors in tension.

An Experimental Study on Shear Strength of Set Anchors Installed in Plain Concrete (무근콘크리트에 매입된 셋트앵커의 전단내력평가에 관한 실험적 연구)

  • Seo, Seong Yeon;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.271-283
    • /
    • 2005
  • This paper concerns the prediction of shear capacity, as governed by steel failure and concrete breakout failure, of set anchors installed in plain concrete. For this purpose, the methods to evaluate the shear capacity of the set anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods : the method of ACI349-90 and the Concrete Capacity Design (CCD) method. (1) The constant-0.684 in the steel strength equation of set anchor was determined from shear test data at the 5 percent fractile probability. Consequently, it was concluded that the constant-0.6 and 0.5 in the steel strength equation for steel failure of ACI318-02 and EOTA were safe. The nominal shear strength of set anchor was proposed as following. $V_s=0.684 A_{se}f_{ut}$. (2) The CCD method was considered reasonable in estimating the concrete breakout strength of set anchors. In terms of the CCD method, the nominal concrete breakout strength of set anchor in shear was provided as follows; $V_b=0.609(\frac{\iota}{d_o})^{0.2}\sqrt{d_0}\sqrt{f_c}(c_1)^{1.5}$(N). (3) The CCD method was considered reasonable in estimating the concrete breakout strength for spacing of set anchors. The proposed equation was considered safe in estimating the concrete breakout strength for spacing of set anchors.

Shear Strength of Single Anchors in Uncracked and Unreinforced Concrete (비균열·무근콘크리트의 단일앵커 전단내력 평가)

  • Kim, Sung-Yong;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.171-181
    • /
    • 2003
  • This study concerns the prediction of shear capacity, as governed by concrete breakout failure, concrete pryout failure and steel failure, of single anchors located close to free edge and located far from a free edge and installed in uncracked, unreinforced concrete. For this purpose, the methods to evaluate the shear capacity of the single anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods: the method of ACI 349-90 and concrete capacity design (CCD) method.

Behavior of Large Sized Anchorage System under Shear Loads (직매형 대형매입앵커의 전단거동특성)

  • Kim, Kang-Sik;Kwon, Ki-Joo;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.87-88
    • /
    • 2009
  • In this research project, 24 tests are performed to find out a behavior and shear breakout capacity of large anchor system exceeding 2 inch(50mm) in anchor bolt diameter($d_0$) and 25 inch(635mm) in effective embedment($h_{ef}$) not addressed by ACI 349-01 Appendix B (ACI 349 2001). On this report, analysis results are presented that this variables influence on behavior and shear breakout strength through those of test results.

  • PDF

Shear Strength of Anchors under Load Applied Angle and a Group Anchors at an Edge (앵커간격 및 하중방향에 따른 앵커의 전단내력)

  • Kim, Sung-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.133-141
    • /
    • 2003
  • This study concerns the prediction of shear capacity, as governed by concrete breakout failure of the anchors under load applied angle and an group anchors at an edge and installed in uncracked, unreinforced concrete. For this purpose, the methods to evaluate the shear capacity of the anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods: the method of ACI 349-90 and concrete capacity design (CCD) method.

Static behaviour of bolted shear connectors with mechanical coupler embedded in concrete

  • Milosavljevic, Branko;Milicevic, Ivan;Pavlovic, Marko;Spremic, Milan
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.257-272
    • /
    • 2018
  • The research of shear connectors composed from mechanical couplers with rebar anchors, embedded in concrete, and steel bolts, as a mean of shear transfer in composite connections is presented in the paper. Specific issues related to this type of connections are local concrete pressure in the connector vicinity as well as the shear flow along the connector axis. The experimental research included 18 specimens, arranged in 5 series. Nonlinear numerical analyses using Abaqus software was conducted on corresponding FE models. Different failure modes were analysed, with emphasis on concrete edge failure and bolt shear failure. The influence of key parameters on the behaviour of shear connector was examined: (1) concrete compression strength, (2) bolt tensile strength and diameter and (3) concrete edge distance. It is concluded that bolted shear connectors with mechanical couplers have sufficient capacity to be used as shear connectors in composite structures and that their behaviour is similar to the behaviour of post installed anchors as well as other types of connectors anchored without the head.