• Title/Summary/Keyword: Concrete grinding

Search Result 70, Processing Time 0.035 seconds

Structural Characteristic Analysis of a High-precision Centerless Grinding Machine with a Concrete-filled Bed

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.34-39
    • /
    • 2006
  • High-precision centerless grinding machines are emerging as a means of finishing the outer diameter grinding process required for ferrules, which are widely used as fiber optic connectors. In this study, a structural characteristic analysis and evaluation were carried out using a virtual prototype of a centerless grinding machine to realize systematic design technology and performance improvements required to manufacture ferrules. The prototype consisted of a concrete-filled bed, hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffness values of the centerless grinding machine were estimated based on the relative displacements between the GW and RW caused by grinding forces. The simulated results illustrated that a concrete-filled bed considerably improved the structural stiffness and accuracy of a high-precision centerless grinding machine.

Structural Characteristic Analysis of a Centerless Grinding Machine with Concrete Bed (콘크리트 베드를 이용한 무심연삭기의 구조특성 해석)

  • 김석일;성하경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.32-36
    • /
    • 2002
  • This paper presents the structural characteristic analysis of a centerless grinding machine with concrete bed. The centerless grinding machine is composed of grinding wheel head, regulating wheel head, concrete bed, wheel dresser and so on. Especially, the concrete bed is introduced to improve the static, dynamic and thermal characteristics of the centerless grinding machine. The structural analysis model of centerless grinding machine is constructed by the finite element method, and the structural characteristics in the design stage are estimated based on the structural deformation and harmonic response under the various testing conditions related to gravity force and directional farces

  • PDF

Structural Characteristic Analysis of a High-Precision Centerless Grinding Machine with Concrete-Filled Bed (콘크리트 층진 베드를 적용한 초정밀 무심 연삭기의 구조 해석)

  • Kim Seok Il;Cho Jae Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.172-179
    • /
    • 2005
  • A high-precision centerless grinding machine has been recognized as a core equipment performing the finish outer-diameter grinding process of ferrules which are widely used as fiber optic connectors. In this study, in order to realize the high-precision centerless grinding machine, the structural characteristic analysis and evaluation are carried out on the virtual prototype consisted of the steel bed, hydrostatic GW and RW spindle systems, hydrostatic RW feed mechanism, RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffnesses of centerless grinding machine are estimated based on the relative deformations between GW and RW caused by the grinding forces. And the simulated results illustrate that the concrete-filled bed has the considerable effect on the improvement of the structural stiffness of centerless grinding machine.

Experimental and SEM Analyses of Ground Fly Ash in Concrete

  • Brueggen, Beth;Kang, Thomas H.K.;Ramseyer, Chris
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.51-54
    • /
    • 2010
  • Fly ash is used in concrete to improve the fresh and hardened properties of concrete, including workability, initial hydration temperature, ultimate strength and durability. A primary limitation on the use of large quantities of fly ash in blended cement concrete is its slow rate of strength gain. Prior studies investigated the effects of grinding fly ash and fly ash fineness on the performance of concrete containing fly ash. This study aims to discover the sources of those effects, to verify the compressive strength behavior of concrete made with raw and processed Class C fly ash, and to investigate the properties of fly ash particles at the microscopic level. Concrete cylinder test results indicate that grinding fly ash can significantly benefit the early age strength as well as the ultimate strength of concrete with ground fly ash. Therefore, it is demonstrated that grinding fly ash increases its reactivity. Scanning Electron Microscopy was then used to investigate the physical effects of the grinding process on the fly ash particles in order to identify the mechanism by which grinding leads to improved concrete properties.

Machine Vision based Quality Management System for Tele-operated Concrete Surface Grinding Machine (원격조종 콘크리트 표면절삭 장비를 위한 머신비전 기반 품질관리 시스템)

  • Kim, Jeonghwan;Phi, Seung Woo;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1683-1691
    • /
    • 2013
  • Concrete surface grinding is frequently used for flatness of concrete surface, concrete pavement rehabilitation, and adhesiveness in pavement construction. The procedure is, however, labor intensive and has a hazardous work condition. Also, the productivity and the quality of concrete surface grinding highly depend on the skills of worker. Thus, the development of remote controlled concrete surface grinding equipment is necessary to prevent the environmental pollution and to protect the workers from hazardous work condition. However, it is difficult to evaluate the grinded surface objectively in a remote controlled system. Also, The machine vision system developed in this study takes the images of grinded surface with the network camera for image processing. Then, by representing the quality test results to the integrated program of the remote control station, the quality control system is constructed. The machine vision algorithm means the image processing algorithm of grinded concrete surface and this paper presents the objective quality control standard of grinded concrete surface through the application of the suggested algorithm.

A Study of the Machine Vision Algorithm for Quality Control of Concrete Surface Grinding Equipment (콘크리트 표면절삭 장비의 품질관리를 위한 머신비전 알고리즘 개발)

  • Kim, Jeong-Hwan;Seo, Jong-Won;Song, Soon-Ho;Lee, Won-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.983-986
    • /
    • 2007
  • Concrete surface grinding is required for flatness and adhesiveness of concrete surface. The procedure is, however, labor intensive and has a hazardous work condition. Also, the productivity and the quality of concrete surface grinding depend on the levels of worker. Thus, the development of remote controlled concrete surface grinding equipment is necessary to prevent the environmental pollution and to protect the workers from hazardous work condition. However, it is difficult to evaluate the grinded surface objectively in a remote controlled system. The machine vision system developed in this study takes the images of grinded surface with the network camera for image processing. Then, by representing the quality test results to the graphic MMI program of the remote control station, the quality control system is constructed. The machine vision algorithm means the image processing algorithm of grinded concrete surface and this paper presents the objective quality control standard of grinded concrete surface through the application of the suggested algorithm.

  • PDF

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim, Seo-Kil;Cho, Jae-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

Comparative Study for Grinding of Two Cement Clinkers

  • Ibrahimi, Soumaya;Jamaa, Nejib Ben;Mliki, Khaoula;Bagane, Mohamed
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.113-117
    • /
    • 2011
  • The purpose of this work is the comparative study for grinding of two cement clinkers. X-ray fluorescence, physical and granulometric tests and optical microscopy were used to characterize the clinkers. Also grinding tests were carried out for ten samples to determine the parameters influencing grindability of its clinkers. The results of calculation of the energies of grinding according to the law developed by Von Rittinger and the study of the microstructure of the two clinkers shows good agreements. Indeed, frequent clusters of belite which indicate a lack of uniformity and fineness have an effect on lowering the grindability. The obtained analyses and the results enabled us to interpret the granulometry and the microstructure of clinker to control quality and resistance.

Research on the Influence of Curiosity on MMORPG Grinding Player Experience

  • Yang, Dan;Cho, Dong-Min
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.127-136
    • /
    • 2022
  • In MMORPGs, there are many problems with the Grinding player experience. This research divides the Grinding player experience into four dimensions: Grinding in-Autonomy, Competence, Relatedness and Positive affect through theoretical investigation of game experience. Through the study of Litman (2008), Curiosity is divided into two dimensions, I-Type Curiosity and D-Type Curiosity, and the relationship between Curiosity and Grinding player experience is studied. By distributing questionnaires, collecting data, and using SPSS software to conduct reliability analysis, validity analysis, correlation analysis and multiple regression analysis on the data, it is verified that in MMORPG, I-Type Curiosity can positively affect Grinding in-Autonomy, Competence, Relatedness and Positive affect. D-Type Curiosity can positively affect Grinding in-Autonomy, Competence and Positive affect, but D-Type Curiosity has no statistical relationship with Grinding in-Relatedness. And through the standardized coefficient (Beta) value, between the Curiosity factors, I-Type Curiosity has a greater impact on Grinding in-Autonomy and Positive affect, and D-Type Curiosity has a greater impact on Grinding in-Competence. Finally, from the perspective of I-Type Curiosity and D-Type Curiosity, combined with the drawbacks of the MMORPG Gringding mechanism, some concrete and feasible suggestions and optimization schemes are put forward to improve the Grinding player experience. This research result can provide some feasible suggestions for MMORPG developers and designers, optimize the MMORPG Grinding mechanism from the perspective of I-Type Curiosity and D-Type Curiosity, and improve the Grinding player experience. It can provide appropriate assistance for the improved development of MMORPG games.

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules

  • Kim, Seok-Il;Cho, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.32-37
    • /
    • 2007
  • The outer diameter finishing grinding process required for ferrules, which are widely used as fiber optic connectors, is carried out by high-precision centerless grinding machines. In this study, the thermal characteristics of such a machine, for example, the temperature distribution, temperature rise, and thermal deformation, were estimated based on a virtual prototype and the heat generation rates of heat sources related to normal operating conditions. The prototype consisted of a concrete-filled bed. hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The reliability of the predicted results was demonstrated using temperature characteristics measured from a physical prototype. The predicted and measured results indicated that this particular high-precision centerless grinding machine had very stable thermal characteristics.