• Title/Summary/Keyword: Concrete pavement

Search Result 916, Processing Time 0.032 seconds

Estimation of Tire-Pavement Noise for Concrete Pavement by using Mean Profile Depth (Mean Profile Depth를 이용한 콘크리트 포장의 타이어-노면소음 산정)

  • Hong, Seong Jae;Hyun, Tak Jib;Lee, Seung Woo;Kim, Hyung Bae;Kwon, Oh Sun
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.9-16
    • /
    • 2013
  • PURPOSES: There is a need to develop a method to incorporate tire-pavement noise in the pavement management system. Tire-pavement noise highly depends on the characteristics of pavement texture. Therefore, estimation of texture characteristics may give useful information to predict tire-pavement noise. This study aimed to find the relationship between tire-pavement noise and MPD(Mean Profile Depth) for concrete pavement. METHODS: MPD and tire-pavement noise were collected on the number of expressway sections including Central Inland Test Road in Korea. Statistical analysis was performed to find the correlationship between MPD and tire-pavement noise. In addition, multiple regression analysis to find the tire-pavement noise based on MPD and type of concrete pavement texture. RESULTS: Linear relationship between MPD and tire-pavement noise is observed for concrete pavement. Furthermore, a forensic equation to estimate tire-pavement noise based on MPD and texture types of concrete pavement is suggested. CONCLUSIONS: Tire-pavement noise on concrete pavement can be predicted based on the consideration of texture type and MPD estimation.

Drainage concrete pavement work (배수성 콘크리트 포장 공법)

  • 황익현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.861-868
    • /
    • 1999
  • Drainage concrete pavement, unlike water permeable concrete pavement, is to preclude the pavement from overflowing with water, such as rain water, from infiltrating into earth by placing a border in the middle layer which makes water to flow through the surface of the border to the conduit. Drainage concrete pavement enhances car wheel resistance to slippery and wet road surface and imbibes noise caused by friction on the road. Also, by using pigment, it adds to the beauty of the environment. Drainage concrete pavement can be used for sidewalks, roadways, parking lots and expressways.

  • PDF

Performance Evaluation of Exposed Aggregate Texturing in Concrete Pavement Based on In-Situ Noise Measurements

  • Moon, Han-Young;Ha, Sang-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.504-511
    • /
    • 2003
  • Environmental noise at high intensities directly affects human health by causing hearing loss. Although scientific evidence currently is not conclusive, noise is suspected of causing or aggravating other diseases. Environmental noise indirectly affects human welfare by interfering with sleep, thought, and conversation. Noise emission from motorized vehicle includes power unit noise, tire/pavement noise and aerodynamic noise. Among them, tire/pavement noise is noise emission from interaction of the tire and road surface when the vehicle cruises over the surface of pavement. In general, portland cement concrete(PCC) pavement is known to create more noise than asphaltic surfaces though it has the advantage of durability and superior surface friction. However, the results of preliminary laboratory test showed exposed aggregate concrete(EAC) has and effect on reducing tire/pavement noise. Based on the laboratory test. pilot construction of exposed aggregate concrete pavement was completed and series of in-situ measurements were conducted for noise analysis including the pass-by noise measurement and the close-proximity method. Conclusively, it is expected that tire/pavement noise represent significant portion of noise levels at higher frequencies and it would be reduced on special textures of pavement such as exposed aggregate concrete.

Comparison of Performance of Non-Mill-and-Overlay and Mill-and-Overlay on Concrete Pavement (콘크리트 포장을 덧씌운 비절삭과 절삭 아스팔트 포장의 공용성 비교)

  • Choi, Mi Ran;Park, Hae Won;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.97-103
    • /
    • 2017
  • PURPOSES : In this study, the pavement condition of non-mill-and-overlay and mill-and-overlay on deteriorated concrete pavement was compared. In addition, the suitable time to perform the initial overlay was investigated. METHODS : The condition of the pavement sections that were not additionally overlaid on non-mill-and-overlay or mill-and-overlay on deteriorated concrete pavements was investigated according to overlay pavement age. The condition of non-mill-and-overlay and mill-and-overlay sections of expressway route 25, which has more information on overlay history than other routes, was compared according to the number of times of overlay. The relation between the concrete pavement condition just before the overlay and the number of times of overlay was investigated for the non-mill-and-overlay and mill-and-overlay sections for which the first overlay was performed in the same year. RESULTS : The pavement condition of the non-mill-and-overlay sections was better than that of the mill-and-overlay sections, showing higher Highway Pavement Condition Index(HPCI) regardless of overlay pavement age. The number of reflection crackings of the non-mill-and-overlay sections was smaller than that of the mill-and-overlay sections. As a result of observing the cores obtained from the overlay sections, the proportion of the deteriorated non-mill-and-overlay sections was smaller than that of the mill-and-overlay sections. The SD measured just before the overlay on the concrete pavement for which additional overlay was not performed was smaller than that for which additional overlay was performed regardless of the milling of the concrete slab surface. The HPCI of the concrete pavement for which overlay was performed just once was higher than that for which overlay was performed more than one time. CONCLUSIONS : Accordingly, it was concluded that the condition of the non-mill-and-overlay sections was better than that of the mill-and-overlay sections. In addition, the better the condition of concrete pavement just before the initial overlay, the longer the duration of the overlay effect.

The Effect of the Exposed Aggregate Concrete Pavement on the Reducing Traffic Noise Emission

  • Moon, Han-Young;Ha, Sang-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.352-359
    • /
    • 2003
  • Portland cement concrete (PCC) pavements are more durable and have superior surface friction compared to most dense-graded asphalt. However, data collected to date generally show PCC pavements to create more noise than asphaltic surfaces. Recent research has shown that some of the new concrete pavement textures are worthy of further examination. One of these, exposed aggregate surfaces, appear to provide better noise quality characteristics as well as good frictional characteristics and durability. In this paper, we considered the relationship between noise level and various textures of exposed aggregate concrete (EAC) pavement by tire impact noise measurement. As the results of that, it was suggested that optimum surface texture and manufacturing condition of EAC in order to reduce tire and pavement interaction noise. Conclusively, we would like to recommend optimum condition of EAC pavement at the respects of materials and treatment. Furthermore, Frequency spectrum as well as A-weighted noise level was also evaluated to analyze properties of noise between PCC and EAC.

A Study on the concrete pavement for early traffic opening day (콘크리트 도로포장의 조기개통에 관한 연구)

  • 임창덕;윤원곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.57-60
    • /
    • 1990
  • The purpose of this report is to study the traffic opening day of concrete pavement. For this purpose this paper studies on the propeties of various cement types which include the newly developed cement for the cement pavement regarding the resistance to the chemical attack caused by de-icing salt and the durability of the concrete pavement. Especially, traffic opening day of concrete pavement are discussed on site.

  • PDF

Evaluating the performance AASHTOWare's mechanistic-empirical approach for roller-compacted concrete roadways

  • Emin Sengun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.445-469
    • /
    • 2024
  • The Federal Highway Administration (FHWA) has recommended the use of AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software for Roller-Compacted Concrete (RCC) pavement design, but specific calibration for RCC is missing. This study investigates the software's capacity to predict the long-term performance of RCC roadways within the framework of conventional concrete pavement calibration. By reanalyzing existing RCC projects in several U.S. states: Colorado, Arkansas, South Carolina, Texas, and Illinois, the study highlights the need for specific calibration tailored to the unique characteristics of RCC. Field observations have emphasized occurrence of early distresses in RCC pavements, particularly transverse-cracking and joint-related issues. Despite data challenges, the AASHTOWare PMED software exhibits notable correlation between its long-term predictions and actual field performance in RCC roadways. This study stresses that RCC applications with insufficient joint spacing and thickness are prone to premature cracking. To enhance the accuracy of RCC pavement design, it is essential to discuss the inclusion of RCC as a dedicated rigid pavement option in AASHTOWare PMED. This becomes particularly crucial when the rising popularity of RCC roadways in the U.S. and Canada is considered. Such an inclusion would solidify RCC as a viable third option alongside Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP) for design and deployment of rigid pavements. The research presents a roadmap for future calibration endeavors and advocates for the integration of RCC pavement as a distinct pavement type within the software. This approach holds promise for achieving more precise RCC pavement design and performance predictions.

Methodology of Field Investigation and Laboratory Test for Distresses of Old Concrete Pavements (노후 콘크리트 포장 파손에 대한 현장조사 및 실내시험 방법)

  • Lee, Ki Sang;Lee, Jun Hyeok;Kang, Min Soo;Cho, Nam Hyun;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.21-29
    • /
    • 2016
  • PURPOSES : The purpose of this study is to suggest a specific investigation guideline to decide priority of repairing old concrete pavements that pile up substantially. METHODS : In this study, a principle of division of homogeneous sections was proposed to reflect the characteristics of the pavement reasonably in the specific investigation results. In addition, a checklist and guideline of field investigation were suggested for the old concrete pavement sections, which require inspection toward their durability and structural performance. Furthermore, the items of laboratory test necessary to the old concrete pavement were suggested based on the existing laboratory test considering characteristics of the old concrete pavement. The present condition of the old concrete pavement could be analyzed by the test results. RESULTS : A method of division of homogeneous sections suitable for the specific investigation of the old concrete pavement was suggested. The proportions of distress severity of pavement sections were compared by distress type to figure out the present state of the old concrete pavement. Scaling, durability cracking (or alkali-silica reaction), and longitudinal spalling were selected as the most severe distress types. The detailed positions of the sections were also suggested. The checklist of the specific investigation was categorized by field survey and laboratory test, and its evaluation criteria were proposed. The three types of the sections of durability cracking (or alkali-silica reaction), bridge connection, and asphalt overlay were selected as the sections of the field survey. The compressive strength, void structure, and chloride penetration depth were suggested as the items of the laboratory test. CONCLUSIONS : A fundamental level of the guideline was suggested in this study to resolve the problem of old concrete pavement. Appropriate guidelines related to the repair of the old concrete pavement should be provided by performing additional research efforts.

Bond Strength Characteristics of Bonded Concrete Overlay (접착식 콘크리트 덧씌우기의 부착강도 특성 분석)

  • Park, Jong Won;Kim, Young Kyu;Lee, Seung Woo;Han, Seung Hwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES : Bonded concrete overlay is a favorable maintenance method since the material properties are similar to existing concrete pavements. In addition, bonded concrete overlay has advantage of structural performance since the overlay layer and the existing pavement perform as a monolithic layer. It is important to have suitable bond strength criteria to secure the performance of bonded concrete overlay. This study aimed to investigate the factors influencing bond strength characteristics between existing concrete pavement and overlay material. METHODS: Bond strength between overlay and existing pavement are measured and analyzed for various conditions such as the type of overlay materials, compressive and flexure strength of overlay and existing pavement, and deterioration status of existing pavement. RESULTS: The strength of overlay material does not significantly influence the bond strength. The overlay of ultra-rapid hardening cement generally gives low bond strength. However, ultra rapid hardening polymer modified concrete gives robust bond strength. The deterioration of existing concrete significantly decrease the bond strength. CONCLUSIONS: Bond strength of bonded concrete overlay highly depends on condition of existing concrete pavement rather than overlay material.

An Experimental Study on Roller Compacted Concrete (진동 전압 콘크리트의 실험실적 연구)

  • 현석훈;김진춘;김병권
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.393-398
    • /
    • 1994
  • Roller compacted concrete(RCC) has been attracted due to its growing application to pavement concrete construction. In this study optimum mixing formation of RCC was explored and characterized its properties forcusing on reducing try and error for actual application to construction of pavement. The concrete used for roller compacted concrete pavement (RCCP) has very low water content per unit volume, so that it develops early high strength. This high early strength development makes pavement constructed open early. This concrete also showed very reduced crack formed on the surface because of expensive cement.

  • PDF