• Title/Summary/Keyword: Concrete-filled rectangular steel tubular column

Search Result 16, Processing Time 0.034 seconds

Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load (중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구)

  • Lee, Hyung-Seok;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

An Experimental Study on the Compression Behavior of the Circular and Square Tubular Steel Pipe filled with Concrete (콘크리트 충전 원형 및 각형 합성 강관 기둥의 압축 거동에 관한 실험적 연구)

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.55-63
    • /
    • 2006
  • Concrete-filled steel columns consist of circular, square or rectangular hollow sections filled concrete. Much research has studied for the behavior of concrete-filled steel structures. The advantages from structural point of view are the triaxial confinement of the concrete within the section, and the fire resistance of the column which largely depends on the residual capacity of the concrete core. The axial capacity of a concrete-filled rectangular or circular section is enhanced by the confining effect of the steel section on the concrete which depends in the magnitude on the shape of the section and the length of the column. Buckling tends to reduce the benefit of confinement on the squash load as the column slenderness increases. In circular sections it is possible to develop the cylinder strength of the concrete. When compare with reinforced concrete columns, the concrete-filled composite column possesses much better strength and ductility in shear and generally in flexure also. Many researches are being conducted about concrete filled steel column to get these advantages in building design. In this paper it is provided to the basic experimental study of compression behavior of the circular and rectangular tubular steel pipe filled with concrete.

  • PDF

Strength of Concrete-Filled Rectangular Steel Tubular Columns (콘크리트 충전 각형강관 기둥의 내력 평가)

  • Yoo, Yeong Chan;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.89-98
    • /
    • 1999
  • The objective of this paper is to investigate the structural behavior of concrete filled steel tubular columns subjected to eccentric load. With experiment and analytical study, the buckling behavior of columns is investigated and compared with each other to the view of main parameters. Appling foreign standards in the experimental results, we suggested new strength formula of concrete-filled steel tubular columns. The parameters are slenderness, eccentric ratio, and concrete filled or not. The experiment are carried out by simple loading.

  • PDF

A Experimental study about an effect of shear-connector at a bond stress in concrete filled rectangular tubular column (콘크리트 충전 각형 강관기둥의 부착응력에 있어 shear-connector의 영향에 관한 실험적 연구)

  • 박성무;김성수;김원호;이형석;이경섭;송준근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.561-566
    • /
    • 2001
  • Load at steel beam column joints transfered by beam depend on bond strength between concrete and steel tube. But it is different to transmit a load efficiently in the established concrete filled steel tubular column. Therefore, shear-connector is demanded for transfering loads efficiently. An ascent of bond stress and a transmission of load after debonding are expected by a reinforcement of shear-connector

  • PDF

Experimental study on the seismic behavior in the connection between CFRT column and steel beam

  • Lu, Xilin;Yu, Yong;Kiyoshi, Tanaka;Satoshi, Sasaki
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.365-374
    • /
    • 2000
  • The structural behavior of connections between concrete-filled rectangular tubular column (CFRT column) and steel beam has been studied in this paper through sub-assemblage loading tests. It is found that the sub-assemblages exhibit ductile restoring force characteristics under seismic loading. A formula for the prediction of the yield strength of each member in the connection is proposed by using the yield line theory under the assumption of a simple stress transfer mechanism. It is shown that the proposed formula can produce a reasonable prediction while providing a basis for further investigation.

Nonlinear analysis on concrete-filled rectangular tubular composite columns

  • Lu, Xilin;Yu, Yong;Kiyoshi, Tanaka;Satoshi, Sasaki
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.577-587
    • /
    • 2000
  • A 3D nonlinear finite element computation model is presented in order to analyze the concrete filled rectangular tubular (CFRT) composite structures. The concrete material model is based on a hypo-elastic orthotropic approach while the elasto-plastic hardening model is employed for steel element. The comparisons between experimental and analytical results show that the proposed model is a relatively simple and effective one. The analytical results show that the capacity of inner concrete of CFRT column mainly depends on the two diagonal zones, and the confining effect of CFRT section is mainly concentrated on the corner zones. At the ultimate state, the side concrete along the section cracks seriously, and the corner concrete softens with the increase of compressive strains until failure.

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.

GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading

  • Luat, Nguyen-Vu;Lee, Jaehong;Lee, Do Hyung;Lee, Kihak
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This study presents applications of the multivariate adaptive regression splines (MARS) method for predicting the ultimate loading carrying capacity (Nu) of rectangular concrete-filled steel tubular (CFST) columns subjected to eccentric loading. A database containing 141 experimental data was collected from available literature to develop the MARS model with a total of seven variables that covered various geometrical and material properties including the width of rectangular steel tube (B), the depth of rectangular steel tube (H), the wall thickness of steel tube (t), the length of column (L), cylinder compressive strength of concrete (f'c), yield strength of steel (fy), and the load eccentricity (e). The proposed model is a combination of the MARS algorithm and the grid search cross-validation technique (abbreviated here as GS-MARS) in order to determine MARS' parameters. A new explicit formulation was derived from MARS for the mentioned input variables. The GS-MARS estimation accuracy was compared with four available mathematical methods presented in the current design codes, including AISC, ACI-318, AS, and Eurocode 4. The results in terms of criteria indices indicated that the MARS model was much better than the available formulae.

Inelastic stability analysis of high strength rectangular concrete-filled steel tubular slender beam-columns

  • Patel, Vipulkumar Ishavarbhai;Liang, Qing Quan;Hadi, Muhammad N.S.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.91-104
    • /
    • 2012
  • There is relatively little numerical study on the behavior of eccentrically loaded high strength rectangular concrete-filled steel tubular (CFST) slender beam-columns with large depth-to-thickness ratios, which may undergo local and global buckling. This paper presents a multiscale numerical model for simulating the interaction local and global buckling behavior of high strength thin-walled rectangular CFST slender beam-columns under eccentric loading. The effects of progressive local buckling are taken into account in the mesoscale model based on fiber element formulations. Computational algorithms based on the M$\ddot{u}$ller's method are developed to obtain complete load-deflection responses of CFST slender beam-columns at the macroscale level. Performance indices are proposed to quantify the performance of CFST slender beam-columns. The accuracy of the multiscale numerical model is examined by comparisons of computer solutions with existing experimental results. The numerical model is utilized to investigate the effects of concrete compressive strength, depth-to-thickness ratio, loading eccentricity ratio and column slenderness ratio on the performance indices. The multiscale numerical model is shown to be accurate and efficient for predicting the interaction buckling behavior of high strength thin-walled CFST slender beam-columns.

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.