• Title/Summary/Keyword: Cone factor

Search Result 156, Processing Time 0.019 seconds

A Reliability Study on Estimating Shear Strength of Marine Soil using CPT (Cone 관입시험을 이용한 해양토질의 전단강도 산정에 대한 신뢰도 연구)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1987
  • Reliability of the cone penetration test (CPT) for estimating shear strength of marine soils is investigated in this paper. For sands, the uncertainty about the angle of internal friction is analyzed. It includes the spatial variation of the soil and the model error in the equation used for interpretation. The most serious uncertainty encountered was the error in the interpretative models. Different methods of interpretation gave quite different values. Subjective opinion was introduced to combine all the interpretative models in a systematic manner. For clays, the undrained Shear Strength from the CPT results is usually =derived by empirical correlations between cone resistance and untrained shear strength from laboratory tests or field vane tests, expressed in terms of cone factor and function of overburden pressure. The uncertainty of the undrained shear strength is caused by data scatter of the cone factor in the correlation, model error of the cone factor, effect of anisotropy, and spatial variability of cone resistance. Among these uncertainties, the most serious one was the data scatter of the cone factor in the .correlation. Between the laboratory test and the field vane test used for correlation, the field vane test was more reliable.

  • PDF

Uncertainy Analysis of Shear Strength Characteristics of Marine Soils (해성점토의 강도특성에 대한 불확실성 분석)

  • 이강운;채영수;윤길림;백세환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.215-222
    • /
    • 2001
  • Uncertainty study of shear strength characteristics of the marine clays was carried out based ell In-situ tests and laboratory tests on tile south-east coastal region of the Korean peninsula. Theoretical analyses were studied using both tile spherical cavity expansion theory in finite soil mass and the strain path method to determine tile cone factor using the undrained shear strengths obtained by in-situ tests, and the empirical methods in accordance with the ultimate resistance theory were also discussed. Analysis show that the empirical methods suggest more reasonable value than that of theoretical methods in terms of comparing the cone factor estimated using linear regression and frequency distribution analyses. The cone factors obtained by the empirical methods are 18, 15, and 6 respectively, from the results of total cone resistance, effective cone resistance, and excess porewater cone resistance method, and the estimated were similar to those of previous researcher's.

  • PDF

Structural Analysis of Hammering System for Pine Cone Harvest using Industrial Drone (산업용 드론을 이용한 잣수확용 해머링 시스템의 구조해석)

  • Ki-Hong Kim;Dae-Won Bae;Won-Sik Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.285-291
    • /
    • 2023
  • In this paper, in order to secure the safety and productivity of pine cone harvest, modeling and structural analysis of the hammering system for pine cone harvest drone that can easily access pine cone of Pinus koraiensis and collide with them to harvest them was performed. It calculate the equivalent stress for the structure of the hammering system and the yield strength of the applied material by applying the shear force of the stalk at which the pine cone is separated from the branch, and it is to verify the safety of the structure and propose an optimal design through appropriate factor of safety and design change. The shear force of the stalk at which the pine cone was separated from the branch was 468 N, and was applied to both ends of the hammering system. The yield strength of SS400 steel used in the hammering system is 245 ㎫, and the design change and structural analysis were performed so that the Von Mises stress could be less than 122.5 ㎫ by applying the factor of safety of 2.0 or more. As a result of the structural analysis of the frist modeling, the Von Mises stress was 220.3 ㎫, the factor of safety was 1.12, and the stress was concentrated in the screw fastening holes. As a result of the design change of the screw fastening holes, the Von Mises stress was 169.4 ㎫, the factor of safety was 1.45, and the stress was concentrated on the side part. As a result of the design change by changing screw fastening holes and adding ribs, the Von Mises stress was 121.6 ㎫, and the factor of safety was 2.02. The safety of the hammering system was secured with an optimal design with little change in mass. There was no deformation or damage as a result of experimenting on pine cone harvest by manufacturing the hammering system with an optimal design.

Electron Dosimetry of Shaped Fields on Mevatron KD 67-7467 (Mevatron KD 67-7467의 변형조사면에 대한 전자선 선량측정)

  • U Hong;Samuel Ryu;H. D. Kang
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.109-122
    • /
    • 1990
  • A method of making inserts for shaped fields in electron beam therapy on the Mevatron KD 67-7467 Linear Acclerator is introduced. The inserts are made from an alloy called Lipowitz metal. These are designed to fit the inside of the standard Siemens cones. Studies have shown that this method does not adversely affect field flatness. However, if the ratio of shaped field to open field is greater than about 70%, the output dose is significantly changed by the inserts. Because the cone ratios for the fields do not follow the open cone ratio curves on the Mevatron KD 67-7467, we separated the cone ratio suggested by Biggs into two parts, the insert ratio and the cone factor. The dosimetry for these shaped beams has been investigated extensively.

  • PDF

A Study on Electron Dose Distribution of Cones for Intraoperative Radiation Therapy (수술중 전자선치료에 있어서 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Yun, Hyong-Geun
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 1992
  • For intraoperative radiation therapy using electron beams, a cone system to deliver a large dose to the tumor during surgical operation and to save the surrounding normal tissue should be developed and dosimetry for the cone system is necessary to find proper X-ray collimator setting as well as to get useful data for clinical use. We developed a docking type of a cone system consisting of two parts made of aluminum: holder and cone. The cones which range from 4cm to 9cm with 1cm step at 100cm SSD of photon beam are 28cm long circular tubular cylinders. The system has two 26cm long holders: one for the cones larger than or equal to 7cm diamter and another for the smaller ones than 7cm. On the side of the holder is an aperture for insertion of a lamp and mirror to observe treatment field. Depth dose curve. dose profile and output factor at dept of dose maximum. and dose distribution in water for each cone size were measured with a p-type silicone detector controlled by a linear scanner for several extra opening of X-ray collimators. For a combination of electron energy and cone size, the opening of the X-ray collimator was caused to the surface dose, depths of dose maximum and 80%, dose profile and output factor. The variation of the output factor was the most remarkable. The output factors of 9MeV electron, as an example, range from 0.637 to 1.549. The opening of X-ray collimators would cause the quantity of scattered electrons coming to the IORT cone system. which in turn would change the dose distribution as well as the output factor. Dosimetry for an IORT cone system is inevitable to minimize uncertainty in the clinical use.

  • PDF

Estimation of Undrained Shear Strength of Clay under Failed Slope (사면파괴 하부 점토지반 비배수강도의 평가)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5572-5577
    • /
    • 2012
  • Results of in-situ test, laboratory test and strength prediction method for the soft soil underlain by failed road embankment were compared each other. Comparing cone penetration test results with the field vane test results it can be seen that cone factor is 12. Undrained shear strengths determined from the cone factor which was predicted by prediction equation were smaller than those obtained from field vane tests. Among the prediction methods Jamiolkowsky's method gave close strengths to the measured undrained shear strengths by field vane tests and strength ratio were 0.88~1.23.

A Study on the Characteristics of Ultra Precision Machining of a Al Cone Mirror (Al 원추경 초정밀가공 특성에 관한 연구)

  • 현동훈;조언정;이승준;권용재;김영찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.397-401
    • /
    • 2003
  • In this work, diamond turning process is used to produce mirror surface on a Al cone. The Al cone as used as a mirror which can reflect a laser beam without scattering and, hence, it is critical to minimize the surface roughness of a Al cone. During diamond turning, feedrate and tool nose radius are changed to investigate characteristics of the ultra precision machined surface of a Al cone. A laser beam of 633 nm is applied to examine the effect of surface roughness on the characteristics of reflectivity. It is found that surface roughness is not significantly affected by feedrate. The main factor influencing surface roughness is tool nose radius. The line patterns of reflected laser beams show that the minimum surface roughness of 0.08 $\mu\textrm{m}$ (Ra) is required to avoid scattering phenomena of reflectivity.

  • PDF

Evaluation of CPTU Cone Factor of Silty Soil with Low Plasticity Focusing on Undrained Shear Strength Characteristics (저소성 실트지반의 비배수 전단강도 특성을 고려한 CPTU 콘계수 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • Laboratory and in-situ tests were conducted to evaluate the cone factors for the layers with low plasticity containing a lot of silty and sand soils from the west coast (Incheon, Hwaseong and Gunsan areas) and its applicability was evaluated based on these results. The cone factors were evaluated from 19 to 23 based on unconfined compression strengths (qu), from 13 to 13.8 based on simple CU strengths and from 11.6 to 13.1 based on field vane strengths, respectively. The unconfined compression strengths of undisturbed silty soil samples with low plasticity were considerably underestimated due to the change of in-situ residual effective stress during sampling. Half of unconfined compression strength (qu/2) based cone factors of silty soils with low plasticity fluctuated and were approximately 1.8 times higher than simple CU based values of these soils. When evaluating cone factors of these soils, it should be judged overall on the physical properties such as the grain size distribution and soil plasticity and on the fluctuation of the corrected cone resistance and the sleeve friction due to the distribution of sandseam in the ground including pore pressure parameter.

A Study on Cone Factors for Northeastern Part of Shiwha Area I : Evaluation and Pore Pressure Parameter (시화지구 북동지역에서의 콘 계수 연구 I: 값 결정 및 간극수압비)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.406-411
    • /
    • 2012
  • The undrained strength of soils is open determined from the results of the piezocone penetration. The reliability of the value of the undrained strength lies on the cone factor value, whose evaluation needs a lot of experimental data and investigation for each site. In this study, the cone factors were evaluated for the northeastern part of Shiwha area in Gyunggi province using the experimental data of the field vane, unconfined compression, and UU triaxial compression tests. The values of the conventional cone factors $N_{kt}$, $N_{ke}$, $N_{{\Delta}u}$, and the new factor $N_e$ were determined to be 12, 11, 3, and 13, respectively. It was observed that there is a remarkable relationship between $N_{{\Delta}u}$ and the pore pressure ratio Bq.

Seismic evaluation of soil-foundation-structure interaction: Direct and Cone model

  • Khazaei, Jahangir;Amiri, Azadeh;Khalilpour, Mehrdad
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.251-262
    • /
    • 2017
  • The present research intends to study the effects of the seismic soil-foundation-structure interaction (SFSI) on the dynamic response of various buildings. Two methods including direct and Cone model were studied through 3D finite element method using ABAQUS software. Cone model as an approximate method to consider the SFSI phenomenon was developed and evaluated for both high and low rise buildings. Effect of soil nonlinearity, foundation rigidity and embedment as well as friction coefficient between soil-foundation interfaces during seismic excitation are investigated. Validity and performance of both approaches are evaluated as reference graphs for Cone model and infinite boundary condition, soil nonlinearity and amplification factor for direct method. A series of calculations by DeepSoil for inverse earthquake record modification was conducted. A comparison of the two methods was carried out by root-mean-square-deviation (RMSD) tool for maximum lateral displacement and story shear forces which verifies that Cone model results have good agreement with direct method. It was concluded that Cone method is a convenient, fast and rather accurate method as an approximate way to count for soil media.