• Title/Summary/Keyword: Conicity Force

Search Result 6, Processing Time 0.02 seconds

Wheelset Steering Control for Improvement a Running Safety on Curved Track (곡선부 주행안전성 향상을 위한 윤축 조향 제어)

  • Hur, Hyun Moo;Ahn, Da Hoon;Kim, Nam Po;Sim, Kyung Seok;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

Tire and Vehicle Pull I-Experimental Results (타이어와 차량 쏠림 I-시험결과)

  • 이정환;이주완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.194-201
    • /
    • 2000
  • It is called vehicle pull when a vehicle drifts in the lateral direction under the straight-ahead motion with no steering or external input. Recently vehicle pull draws attention as one of the critical evaluation items from the customers on the vehicle quality. It is generally recognized that the vehicle pull is complex phenomena due to internal and external factors. In this paper the relations between vehicle pull and ire were investigated through close survey on the road test results from the final inspection of car manufactures. Through this investigation the factors are identified which play an important role in causing vehicle pull problem.

  • PDF

Running Safety of High Speed Freight Bogie (고속주행용 화차대차의 주행안전성)

  • 이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.116-122
    • /
    • 2001
  • As freight traffic becomes heavier, the high speed of existing freight cars is essential, instead of the construction of a new railway. The high speed can be achieved by the modifications of freight bogie design. In this paper, an analytical model of freight bogie is developed to decide the critical speed. The dynamic responses of the analytical model are compared with the experimental data from a running test of freight bogie and showed good agreements between them. The analytical model is used to find the design of freight bogie. The parameter studies show that the reduction of wheelset mass ratio and the increase of the axle distance of freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this study also shows that smaller wheel conicity deteriorates the running safety of freight car, which means that the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

Running Safety of High Speed Freight Bogie (고속주행용 화차 대차의 주행안전성)

  • 이승일;최연선
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.179-186
    • /
    • 2001
  • As the freight traffic becomes heavier, the high speed of existing freight cars is essential instead of the construction of a new railway. The high speed can be achieved by the design modifications of the freight bogie. In this paper, an analytical model of freight bogie including the lateral force between rail and the flange of wheel is developed to decide the critical speed, which activates a hunting motion and tells the running safety of freight bogie. The dynamic responses of the analytical model were compared with an experimental data from a running test of a freight bogie and showed good agreements between them. The analytical model is used to find the design modifications of the freight bogie by parameter studies. The results show that the reduction of wheelset mass ratio and the increase of the axle distance of the freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this also study shows that smaller wheel conicity deteriorates the running safety of the freight car, which means the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

Tire and Vehicle Pull II- Basic Theory, Simulation, and Verification (타이어와 차량 쏠림 II-이론적 배경, Simulation, 실차검증)

  • 이정환;문승환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.157-164
    • /
    • 2000
  • It is known that residual aligning torque of tires causes vehicle pull. There is, however, only a little literature available which shows how the residual aligning torque of tires causes vehicle pull. In this paper, a vehicle model in two degrees of freedom was adopted for the analysis of a vehicle under the straight-ahead motion. The analysis with this vehicle model clearly shows the effect of residual aligning torque of tires on vehicle pull. In order to show the validity of the analysis, a vehicle commercially available was selected. This vehicle was modeled in 137 degrees of freedom system with multibody dynamics software. Vehicle pull simulation results show that vehicle model drifts in lateral direction due to the residual aligning torque of tires. Vehicle test results with the car were also included.

  • PDF

Compatibility Analysis of Wheel/Rail Profile on Conventional Railway (기존철도 차륜/레일형상의 적합성 분석)

  • Hur, Hyun-Moo;Seo, Jung-Won;Chung, Heung-Chai;Goo, Dong-Hoe
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.934-939
    • /
    • 2004
  • Railway wheel/rail contact conditions have an influence on dynamic behavior of rolling stock. If there are problems of incompatibility between wheel and rail, damages like wheel wear, wheel spalling, rail wear, etc are occurred. Especially wheel and rail profiles are important factor of vehicle curving performance, so compatibility study between wheel and rail has to be carried out preferentially, In this study, we have analyzed the compatibility between wheel and rail of KNR conventional line to improve the maintenance efficiency of wheel and rail. Thus we showed the results relating to wheel/rail geometric contact, vehicle running performances as the change of wheel/rail combination.

  • PDF