• Title/Summary/Keyword: Connector interaction

Search Result 30, Processing Time 0.027 seconds

A Priority Process Based Connector's Interaction considering Component Processing Time (컴포넌트 처리시간을 고려한 우산순위기반의 커넥터 상호작용)

  • Jeong Hwa-Young
    • Journal of Internet Computing and Services
    • /
    • v.6 no.2
    • /
    • pp.49-57
    • /
    • 2005
  • Connector's role between components is very important in the CBD(Component Based Development). The most connector has process ADL based rrethod was choosing FIFO method by component request. But in case many component's with various characteristics request It is difficult that this method operate efficiently, In this research, I did design and implement priority connector considering component's processing time, Also, I used Wright architecture for formal specification. Application result of proposed connector was spend more 388ms compares with existent FIFO method in total processing time. But this method could handle preferentially from components that have short processing time. Also, in case of component's waiting time in connector, existent FIFO method is 23323,1 ms and proposal method is 12731.27ms, So, proposal method could reduce waiting time for component process.

  • PDF

A Study on Factors Influencing the Shear Strength of Shear Connectors (전단연결재 강도산정 영향인자에 대한 연구)

  • 여진호;임남형;강영종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1091-1096
    • /
    • 2001
  • Generally, in a steel girder and the concrete slab act as a composite structure, the connectors must have adequate strength and stiffness. If there are no horizontal or vertical separations at the interface, the connectors are described as rigid, and complete interaction can be said to exist under these idealized circumstances. In previous study, it was considered that the strength of stud is affected by the stud diameter, height of stud and compressive strength of concrete. The differences between previous study and this study are variables, which are shank diameter of shear connector, the spacing of shear connector, the size of specimen and the row of shear connector. So this paper, as a study on the strength of shear connector with the spacing of shear connector, size of specimen (block-out size), row of shear connector and shank diameter of shear connector resulted from the push-out specimen are conducted with ABAQUS program. It is to investigate the effects of characteristics of these factors. The load-slip relations obtained from the experiments are compared with those of analyses. From these results, the trends of stress are stress estimated and compared with push-out test.

  • PDF

Behavior and resistance of truss-type shear connector for composite steel-concrete beams

  • Lima, Jerfson M.;Bezerra, Luciano M.;Bonilla, Jorge;Silva, Ramon S.Y.R.C.;Barbosa, Wallison C.S.
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.569-586
    • /
    • 2020
  • The behavior of composite steel-concrete beams depends on the transmission of forces between two parts: the concrete slab and the steel I-beam. The shear connector is responsible for the interaction between these two parts. Recently, an alternative shear connector, called Truss Type connector, has been developed; it aligns efficient structural behavior, fast construction and implementation, and low cost when compared to conventional connectors applied in composite structures. However, there is still a lack of full understanding of the mechanical behavior of the Truss Type connector, due to its novelty. Thus, this study aims to analyze the influence of variation of geometric and physical parameters on the shear resistance of the Truss Type connector. In order to investigate those parameters, a non-linear finite element model, able to simulate push-out tests of Truss Type connectors, was specifically developed and validated with experimental results. A thorough parametric study, varying the height, the angle between rods, the diameter, and the concrete strength, was conducted to evaluate the shear resistance of the Truss Type connector. In addition, an equation to predict the resistance of the original Truss Type shear connector was proposed.

The Message Scheduling Algorithm of Connector in the Software Composition (컴포넌트 합성에서 커넥터의 메시지 스케쥴링 알고리즘)

  • Jeong, Hwa-Young
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.87-93
    • /
    • 2007
  • In the component based software development, it is very important to interface between modules of component. Almost of existing method, Connectors are deal with all communication channels between two or more components/interfaces by RPC(Remote procedure call) and event call. But these process has limits when component send a lot of request call to other component through connector. That is, we need more efficient interface method that connector can process multi request call. In this paper, I propose interaction scheduling algorithm using message queue in the connector. For this purpose, I use message buffer which operate to save and load message temporarily.

  • PDF

A Study on the Composite Behavior of Simply Supported Composite Girders Considering the Partial Interaction (불완전 합성율을 고려한 단순합성형의 합성거동에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Park, Jae Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.543-555
    • /
    • 1997
  • Generally, in a steel-concrete composite gilder, the shear connector which was constructed between concrete deck and steel girder should have enough stiffness to behave as one body, because the conformity between plate and concrete deck is influences by the stiffness and spacing of the shear connectors. If the stiffness of shear connectors are insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, an easy method is presented to evaluate the stiffness or spacing of the shear connector according to the degree of imperfection without difficult calculations for a composite gilder with partial interaction. Also, the horizontal shearing force applied to the shear connector and the longitudinal axial force, which is occurs at contact surface between concrete deck and steel girder, have been presented in a simple influence line that is various to the parameters of sectional properties, degree of imperfection and applied load points. Furthermore, through the case study, it determined the relationships between the degree of imperfection and the follows 1) spring constants 2) axial force and horizontal shearing force 3) stress and neutral axis by using the partial differential equation based on Newmark's Partial Interaction Theory.

  • PDF

A Study on the Curvature Characteristic of the Incomplete Composite Girder Considering the Deflection Effect (처짐을 고려한 불완전합성형의 곡률특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Yun Hwan;Park, Yong Chan;Song, Su Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • Current composite steel and concrete bridges are designed using full-interaction theory assuming there is no relative slip, between the steel and concrete components along their interface, because of the complexities of partial-interaction analysis techniques. However, in the assessment of existing composite bridges this simplification may not be warranted as it is often necesary to extract the correct capacity and endurance from the structure. This may only be achieved using partial-interaction theory which tuly reflects the behaviour of the structure. In this paper, Parametric analyses have been carried out in order to confirm the partial-interaction curvatures with deflection effect using the finite element method. Therefore, the model is considered for simply supported steel and concrete composite bridges with a uniform distribution of connectors subjected to a single concentrated load. For the case studies, this study applicate a parameters such as the number and space of stud shear connector and elastic modulus of concrete slabs. From this study, it is known that partial-interaction effect was in the increase to the increasing the deflection of composite bridges, and stiffness and strength of slab concrete considering the occurrence of crack effect seriously to the partial-interaction behavior.

A Study on the Design of Shear Connector of Continuous Composite Bridge (연속합성형 교량의 전단연결재 설계에 관한 연구)

  • Chang, Sung Pil;Kang, Sang Gyu;Shim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.351-362
    • /
    • 1997
  • In designing short to medium-span bridges, continuous composite bridges are becoming popular due to their advantages. However, if the concrete slab in continuous composite bridge is not prestressed, negative moment occurs in the mid-support and creates problems such as cracks in the concrete slab. Therefore. it must be considered in design. Two methods of arrangement of shear connectors were conducted using finite element elastic plastic analysis. Partial interaction theory was introduced and an analytical solution based on this theory was derived. The differences in the degree of interaction were investigated using analytical solutions and finite element analyses of simple composite beam and continuous composite beams. The results of the analyses were used to determine the advantage and disadvantages as well as any precaution when necessary using partial composite during actual design and construction.

  • PDF

A Shear Bond Chracteristics of Composite Slab with Closed-Shape Deckplate (폐쇄형 데크플레이트를 사용한 합성슬래브의 전단부착 특성에 관한 연구)

  • Ju, Gi Su;Park, Sung Moo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.557-566
    • /
    • 2001
  • Composite slab with deckplate needs sufficient bond strength between deckplate and concrete to conduct composite behavior Composite slab can transfer the shear by either chemical adhesion interface interlock, or active friction. There are several way of mechanical shear connection in composite slab. that is embossments shear connector shape of deckplate etc. Effect of mechanical interaction is deped on shape of deckplate which is to prevent peeling between deckplate and concrete and an amount of shear connector. The behavior and strength of the connection between the decking and the concrete slab due to embossments and end anchorage may be estimated using the push-off tests described in this paper We proposed the equation of shear bond strength in the composite slab It will be use to design by basic data in composite slab.

  • PDF

Push out tests on various shear connectors used for cold-formed steel composite beam

  • Rajendran, Senthilkumar;Perumalsamya, Jayabalan;Mohanraj, Divya
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.315-323
    • /
    • 2022
  • Shear connectors are key elements that ensure integrity in a composite system. The primary purpose of a shear connector is to bring a high degree of interaction between composite elements. A wide variety of connectors are available for hot-rolled composite construction, connected to the beam through welding. However, with cold-formed members being very thin, welding of shear connectors is not desirable in cold-formed composite constructions. Shear connectors for cold-formed elements are limited in studies as well as in the market. Hence in this study, three different types of shear connectors, namely, single-channel, double channel, and self-tapping screw, were considered, and their performance assessed by the Push-out test as per Eurocode 4. The connection between channel shear connectors and the beam was made using self-tapping screws to avoid welding. The performance of the connectors was analyzed based on their ultimate capacity, characteristic capacity, ductility, and slippage during loading. Strength to weight ratio was also carried out to understand the proposed connectors' suitability for conventional ones. The results showed relatively higher initial stiffness and ductility for double channel connectors than other connectors. Also, self-tapping screws had a higher strength to weight ratio with low ductility.

Experimental study on circular concrete filled steel tubes with and without shear connectors

  • Chithira, K.;Baskar, K.
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.97-114
    • /
    • 2014
  • This paper deals with a study on ultimate strength behaviour of eccentrically loaded CFT columns with and without shear connectors. Thirty specimens are subjected to experimental investigation under eccentric loading condition. P-M curves are generated for all the test specimens and critical eccentricities are evaluated. Three different D/t ratios such as 21, 25 and 29 and L/D ratios varying from 5 to 20 are considered as experimental parameters. Six specimens of bare steel tubes as reference specimens, twelve specimens of CFT columns without shear connectors and twelve specimens of CFT columns with shear connectors, in total thirty specimens are tested. The P-M values at the ultimate failure load of experimental study are found to be well agreed with the results of the proposed P-M interaction model. The load-deflection and load-strain behaviour of the experimental column specimens are presented. The behaviour of the CFT columns with and without shear connectors is compared. Experimental results indicate that the percentage increase in load carrying capacity of CFT columns with shear connectors compared to the ordinary CFT columns is found to be insignificant with a value ranging from 6% to 13%. However, the ductility factor of columns with shear connectors exhibit higher values than that of the CFT columns without shear connectors. This paper presents the proposed P-M interaction model and experimental results under varying parameters such as D/t and L/D ratios.