• Title/Summary/Keyword: Constant Power

Search Result 2,831, Processing Time 0.032 seconds

A Modeling and Analysis of Electric Railway System Using Constant Power Model (정전력모델을 이용한 전기철도 시스템의 회로 모델링 및 해석기법)

  • 홍재승;김주락;오광해;창상훈;김정훈
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.116-122
    • /
    • 2000
  • This paper presents a simulation method with constant power model for the train load. In power system simulation loads could be modeled as a constant power, constant current, constant Impedance or a function of voltage and frequency. At this time, however, representing a train load as the function is difficult because of the lack of data. Therefore as a first step, simulation method with a constant power model fer a train is studied, and the test result is compared with the simulation result using the constant Impedance model.

  • PDF

Investigation on Characteristics of the Baseline Controller for NREL 5 MW Wind Turbine (NREL 5 MW 풍력발전기의 기본 제어기에 대한 특성 고찰)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho;Won, Moon-Chul
    • Journal of Wind Energy
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • The paper is focusing on investigating the control characteristics of the baseline controller of 5 MW wind turbine provided by NREL(National Renewable Energy Laboratory). The baseline controller consist of two control logics, a maximum power tracking control below the rated wind speed and a constant power control above the rated wind speed. In the low wind speed, the mean generator power for changing the turbulent intensity and the optimal constant is studied through numerical simulations using FAST program. On the other hand, the constant power control logic and the constant control logic are compared in the high wind speed. It is confirmed that optimal constant is closely related to the turbulent intensity in low wind speed region and the constant torque control has better performance than the constant power control with respect to mechanical load in high wind speed region.

Simulation on Characteristics of Constant Power Regulator Systems in Variable Displacement Axial Piston Pump (사판식 가변 용량형 액셜 피스톤 펌프의 일정출력 레귤레이터 특성 시뮬레이션)

  • Lee, J.M.;Park, S.H.;Park, Y.H.;Lee, H.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.5-12
    • /
    • 2011
  • In this study, modeling and numerical simulations has been performed to investigate performance characteristics of constant power regulator system for swash plate type axial piston pump. The commercial numerical simulation software, AMESim was applied for analyzing the dynamic behavior of constant power regulator system of swash plate axial piston pump. The validity of simulation model of constant power regulator system is verified by comparing simulation results with experiments. Also, the behavior of main components of constant power regulator system such as spool, sleeve and counterbalance piston is investigated using the results of computer simulation.

Operation Technology of PV-ESS Integrated Module for DC Micro Grid with Constant Power Tracking Algorithm (일정 전력 추종 알고리즘이 적용된 DC 마이크로 그리드용 PV-ESS 통합형 모듈의 운영 기술)

  • Ryu, Kyung;Kim, Jun-Mo;Lee, Jeong;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.433-441
    • /
    • 2020
  • This study proposes a constant power tracking algorithm to compensate for the intermittent characteristics of Photovoltaic connected to a DC micro grid. A PV-ESS integrated module in which distributed ESS is additionally connected is utilized for the proposed algorithm. PV performs P&O MPPT control at all times. To supplement the intermittent characteristics of PV, the proposed constant power tracking algorithm maintains constant power by operating the distributed ESS of the PV-ESS integrated module in accordance with the output state of the PV. By performing PSIM simulation and an experiment, this study verifies the performance of the integrated module of PV-ESS for DC micro grids applying the constant power tracking algorithm.

Analysis of AT Feeding System using Constant Power Model for Train (정전력 열차 모델을 이용한 AT급전 시스템 해석)

  • Kim B.
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1327-1331
    • /
    • 2004
  • In this paper constant power models for electric trains have been used to analyze the steady states of the AT feeding systems. There are some previous studies utilizing constant impedance models or constant current models. These mentioned models are easy to use, but even so they don't yield exact results because of the innate restraints of the models since linear models cannot represent the characteristic of constant power in inverter-driven trains. It is reasonable that the train be considered as a constant load model when it drives or as a constant source model when it applies regenerative brake. Nonlinear equations which reflect constant power model for train have been developed by considering mutual impedances between wires and AT's turn-ratio of 1:1, then these equations have been solved by N-R iterative method. The proposed method doesn't need any specific assumptions through either the process of developing equations or the process of acquiring solutions, so it can be said to be stricter than other conventional methods.

  • PDF

Mixed Mode Control of Constant Power and Constant Current for Resistance Spot Welder using Dynamic Resistance Characteristics (동저항 특성을 이용한 저항 스폿 용접기의 정전력과 정전류의 혼합모드 제어)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1571-1577
    • /
    • 2015
  • A new mixed mode control of constant power and constant current for resistance spot welding inverter is proposed to improve the weld quality. The conventional control scheme adopts constant current or constant power control mode, however, it is not easy to guarantee the high weld quality because of the nonlinear resistance characteristics of the welding point. The proposed method utilizes the nonlinear characteristics by measuring the dynamic resistance in real time. Therefore, it is possible for the welder to be controlled adaptively depending on the welding state. Experimental results show that the proposed control scheme improves the weld quality by 6.8 times compared with the conventional constant current mode control.

A Study on the Mathematical Modeling and Constant Current Adaptive Controller Design for Power LEDs (파워 LED의 수학적 모델링 및 정전류 적응 제어기 설계에 관한 연구)

  • Kim, Eung-Seok;Kim, Young-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, a mathematical model of the power LED system including the drive circuit will be presented to control the power LEDs current. Using this mathematical model, the constant current adaptive controller will be designed. A constant current drive circuit for power LEDs will be configured using Buck-type converter. Precise constant current controller design is enabled by presenting the mathematical model of power LEDs including the current driving circuits. Using the mathematical model of power LEDs and its drive circuits, the constant current adaptive controller will be designed to obtain the robustness for the parameter uncertainties. In order to verify the validity of the proposed controller, computer simulations are performed.

A Constant Current Controller Design for Power LED Drive (파워 LED 구동을 위한 정전류 제어기 설계)

  • Kim, Eung-Seok;Kim, Cheol-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.555-561
    • /
    • 2010
  • In this paper, the constant current controller is designed to regulate the driving current of a power LED. The controller design model of the power LED including its driving circuit is proposed to design the constant current controller. A buck converter is also introduced to drive the power LED. The PI-based digital controller is implemented to validate the proposed strategy for the power LED driving.

An Improved Battery Charging Algorithm for PV Battery Chargers (태양광 배터리 충전기를 위한 개선된 충전 알고리즘)

  • Kim, Jung-Hyun;Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.507-514
    • /
    • 2013
  • In this paper, the proposed charging algorithm is converted from the charging mode to compensate the transient state in the solar battery charging system. The maximum power point tracking (MPPT) control methods and the various charging algorithms for the optimal battery charging are reviewed. The proposed algorithm has excellent transient characteristics compare to the previous algorithm by adding the optimal control method to compensate the transient state when the charging mode switches from the constant current mode to the constant voltage mode based on the conventional constant-current constant-voltage (CC-CV) charging algorithm. The effectiveness of the proposed method has been verified by simulations and experimental results.

A New Approach for Constant DC Link Voltage in a Direct Drive Variable Speed Wind Energy Conversion System

  • Jeevajothi, R.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.529-538
    • /
    • 2015
  • Due to the high efficiency and compact mechanical structure, direct drive variable speed generators are used for power conversion in wind turbines. The wind energy conversion system (WECS) considered in this paper consists of a permanent magnet synchronous generator (PMSG), uncontrolled rectifier, dc-dc boost converter controlled with maximum power point tracking (MPPT) and adaptive hysteresis controlled voltage source inverter (VSI). For high utilization of the converter's power capability and stabilizing voltage and power flow, constant DC-link voltage is essential. Step and search MPPT algorithm which senses the rectified voltage ($V_{DC}$) alone and controls the same is used to effectively maximize the output power. The adaptive hysteresis band current control is characterized by fast dynamic response and constant switching frequency. With MPPT and adaptive hysteresis band current control in VSI, the DC link voltage is maintained constant under variable wind speeds and transient grid currents respectively.