• Title/Summary/Keyword: Constitutive Androstane Receptor

Search Result 21, Processing Time 0.028 seconds

T0901317 as an Inhibitor of Transcriptional Activation of Constitutive Androstane Receptor (CAR) (Constitutive androstane receptor (CAR)의 전사활성 저해제로서의 T0901317)

  • Kim, Hyun-Ha;Seol, Won-Gi
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.481-485
    • /
    • 2011
  • T0901317 is a potent synthetic ligand for liver X receptor (LXR, NR1H2/3), a member of the nuclear receptor superfamily that functions as a transcription factor. However, T0901317 has been also reported to modulate the activity at least four other nuclear receptors (NRs), acting as agonists for farnesoid X receptor (FXR, NR1H4) and pregnane X receptor (PXR, NR1I2) and as antagonists for androgen receptor (AR, NR3C4) and retinoid-related orphan receptor-${\alpha}$ (ROR-${\alpha}$, NR1F1). We report here that T0901317 can also function as an inhibitor for constitutive androstane receptor (CAR, NR1I3). Since CAR is a major player of xenobiotic and cholesterol metabolism in the liver, along with PXR, FXR and LXR, which are reported to be regulated by T0901317, this further complicates the interpretation of potential results with T0901317 in liver cells.

Effects of Constitutive Androstane Receptor (CAR) on PBRU Transactivation of CYP2B Gene in Different Culture Cell Types: Comparison Between Hep G2 and COS-cells (배양세포의 Type에 따른 Constitutive Androstane 수용체 (CAR)의 CYP2B PBRU 전사활성 효과: Hep G2와 COS 세포의 비교)

  • 민계식
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.324-332
    • /
    • 2003
  • The objective of this study was to examine if transient transfection of CAR can transactivate CYP2B1 PBRU reporter gene in COS cells in which the endogenous CYP2B1 gene is not induced by PB. In non-transfeced cells of both Hep G2 and COS, the endogeneous expression of CAR was not detected by antibody against CAR. When cultured cells were transfected with CAR expression plasmid, mCAR1-GFP, both cell types expressed high levels of CAR protein and could allow to examine the effect of CAR in PBRU transactivation. Both cell types expressed endogenous RXR and transfection of RXR expression plasmid dramatically increased its protein expression. Whereas CAR transactivated PBRU2C1Luciferase about 12 fold as compared to 2C1Luciferase in Hep G2 cells, it did not stimulate the luciferase activity of the PBRU reporter gene in COS cells. These results indicate that Hep G2 cells can respond to CAR differently from COS cells, and suggest that factors other than CAR and RXR may be required in inducing PBRU activation and the expression of these factors may be different between liver and kidney.

Regulation of CYP 1A1 gene expression by retinoic acid receptor, retinoid X receptor and constitutive androstane receptor in rainbow trout hepatoma cells(RTH 149)

  • Kim, Ji-Sun;Yang, So-Yeun;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.89-89
    • /
    • 2003
  • Exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a variety of biological and toxicology effects, most of which are mediated by aryl hydrocarbon receptor (AhR). The ligand-bound AhR as a heterodimer with AhR nuclear translocator (ARNT) binds to its specific DNA recognition site, the dioxin-responsive element (DRE), and it results in increased transcription of CYP1A1 gene. Retinoic acid (RA) regulates the transcription of various genes for several essential functions through binding to two classes of nuclear receptors, the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Constitutive androstane receptor (CAR) also regulates the transcription of gene. In this study, we have examined how RAR, RXR and CAR regulated CYP1A1 in rainbow trout hepatoma cell (RTH 149) using luciferase reporter gene assay system. We did transient transfection with CYP1A1 luciferase reporter gene and treated with TCDD, all-trans RA, 9-cis RA and phenobarbital. Treatment of all-trans RA, 9-cis RA or phenobarbital decreased the TCDD induced transcription of CYP1Al. When we did transient cotransfection with CYP1A1 luciferase reporter gene and RXR, as increase of RXR concentration, the TCDD induced transcription of CYP1A1 was decreased. Transfection with CAR also decreased the TCDD induced transcription of CYP1A1 in RTH 149 cells.

  • PDF

Regulation of CYP 1A1 gene expression by retinoic acid receptor, retinoid X receptor and constitutive androstane receptor in rainbow trout hepatoma cells(RTH 149)

  • Kim, Ji-Sun;Yang, So-Yeun;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.179-179
    • /
    • 2003
  • Exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a variety of biological and toxicology effects, most of which are mediated by aryl hydrocarbon receptor (AhR). The ligand-bound AhR as a heterodimer with AhR nuclear translocator (ARNT) binds to its specific DNA recognition site, the dioxin-responsive element (DRE), and it results in increased transcription of CYP1A1 gene. Retinoic acid (RA) regulates the transcription of various genes for several essential functions through binding to two classes of nuclear receptors, the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Constitutive androstane receptor (CAR) also regulates the transcription of gene. In this study, we have examined how RAR, RXR and CAR regulated CYP1A1 in rainbow trout hepatoma cell (RTH 149) using luciferase reporter gene assay system. We did transient transfection with CYP1A1 luciferase reporter gene and treated with TCDD, all-trans RA, 9-cis RA and phenobarbital. Treatment of all-trans RA, 9-cis RA or phenobarbital decreased the TCDD induced transcription of CYP1A1. When we did transient cotransfection with CYP1A1 luciferase reporter gene and RXR, as increase of RXR concentration, the TCDD induced transcription of CYP1A1 was decreased. Transfection with CAR also decreased the TCDD induced transcription of CYP1A1 in RTH 149 cells.

  • PDF