• Title/Summary/Keyword: Contact-loss simulator

Search Result 15, Processing Time 0.032 seconds

Contact Loss Simulator to Analyze the Contact Loss of a Rigid Catenary System

  • Jung, No-Geon;Kim, Jae-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1320-1327
    • /
    • 2017
  • In this paper, a contact loss simulator for a rigid catenary system was designed and used to analyze the effect on the power source according to the conditions of the rigid catenary system and pantograph. R-bar applied to a high-speed train among the real rigid catenary system was used in the contact loss simulator for rigid catenary systems. The excitation frequency generated with the movement of the railway vehicle was simulated. The characteristics according to the frequency and amplitude of the excitation frequency and the presence or absence of pantograph movement were analyzed. This work is considered to be helpful in analyzing the characteristics of contact loss in the interface between a real rigid catenary system and a rail vehicle.

Transient Characteristic Study on Contact Loss of High Speed Electric Railway Using a Power Line Disturbance Simulator (전원외란 시뮬레이터를 이용한 고속전철 이선현상과도 특성 연구)

  • Kim, Jae-Moon;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.427-431
    • /
    • 2009
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated from an electrical response point of view. To analysis power line disturbance by induced contact loss phenomenon for high speed operation, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that an arc phenomenon by loss of contact brings out EMI. In case of a high-speed train using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI(Electromagnetic Interference), dummy signal injection etc usually occurs. Throughout experiment, it is verified that an arc phenomenon is brought out for simulator operation and consequently conducted noise is flowed in electric circuit by power line disturbance.

A study on the dynamic characteristic of voltage and current in a feeder system in case of cause contact loss on driving an electrical railway vehicle (전기차량 주행 중 이선상태에 따른 급전계통의 전압, 전류 동특성 연구)

  • Kim, Jae-Moon;Park, Young;Kim, Yang-Su;Lee, Jong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2215-2216
    • /
    • 2011
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to electrical railway vehicle is investigated from an electrical response point of view. To analysis voltage and current waveforms by induced contact loss phenomenon on driving electrical railway vehicle, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. Throughout prototype simulator and contact wire and catenary wire experiments, it is confirmed that current waveforms is distorted by contact loss phenomenon and in case of driving electrical railway vehicle.

  • PDF

Arc Detection System using a Spectrometer for Status Monitoring of a Rigid Catenary

  • Jung, No-Geon;Kim, Jae-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2419-2425
    • /
    • 2017
  • In this paper, a system for the precise detection of arcs is proposed for a rigid catenary using a spectrometer. For this purpose, a miniature rigid catenary contact-loss simulator was used. Experiments were performed by varying the amplitude of the excitation frequency with which a real arc can occur using a simulator in the range of 5 to 15 mm. The range of the radiated wavelength of the copper, which is a material in the rigid catenary, and the irradiance were measured using a spectrometer according to the generated contact loss. In addition, the amount was monitored over time and its characteristics were analyzed. The voltage and current of the load were analyzed when the arc occurred due to contact loss. The analytical results will be applied to detect rigid catenary arcs and used as a monitoring system for real vehicles developed in the future. This will prevent abrasion and disconnection in rigid catenary systems.

The Simulation Implementation on contact loss of high speed electric railway using a Power Line Disturbance simulator (전원외란 시뮬레이터를 이용한 고속전철 이선현상 모의 실험)

  • Kim, Jae-Moon;Kim, Yang-Soo;Chang, Chin-Young;Ahn, Jeong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2152_2153
    • /
    • 2009
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated from an electrical response point of view. To analysis power line disturbance by induced contact loss phenomenon for high speed operation, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that an arc phenomenon by loss of contact brings out EMI. In case of a high-speed train using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occurs. Throughout experiment, it is verified that an arc phenomenon is brought out for simulator operation and consequently conducted noise is flowed in electric circuit by power line disturbance.

  • PDF

Development of simulator by induced contact loss phenomenon for high-speed train operation (고속전철 주행에 따른 이선현상 모의 시뮬레이터 개발)

  • Kim, Jae-Moon;Kim, Yang-Soo;Kim, Chul-Soo;Chang, Chin-Young;Kim, Youn-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.499-503
    • /
    • 2009
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated from an electrical response point of view. To analysis power line disturbance by induced contact loss phenomenon for high speed operation, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that an arc phenomenon by loss of contact brings out EMI. In case of a high-speed train using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occurs. Throughout experiment, it is verified that an arc phenomenon is brought out for simulator operation and consequently conducted noise is flowed in electric circuit by power line disturbance.

  • PDF

Development of an Arc Detector Assessment System by Loss of Contact Between Pantograph and Contact Wire in Electric Railway (전기철도 팬터그래프-전차선간 이선아크 검측 평가 기술 개발)

  • Park, Young;Cho, Yong-Hyeon;Kwon, Sam-Young;Lee, Ki-Won;You, Won-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2171-2175
    • /
    • 2011
  • The objective of this paper is to discuss technologies on assessing reliability of arc detectors by composing a system that generates and simulates occurrence of arc caused by loss of contact between pantographs and contact wires in a laboratory condition. In order to establish the arc simulator, a device that generates light having the bandwidth of arcs that occur between carbon-metal. The simulator was designed under conditions of EN 50317 and simulations were conducted using the developed device. According to the results, it was possible to conduct certification tests following regulations of international standards and the precision of the simulator was satisfactory. The proposed arc detector assessment system is expected to enhance precision of current collection quality performance assessment methods at high-speed lines and conventional lines while being referred as fundamental technologies for development of detectors suiting international conditions.

Reduction of Power Disturbance by Contact Loss Phenomenon of a High Speed Electric Train Using Passive Filters (수동필터를 이용한 고속전철 이선현상에 의한 전원외란 저감)

  • Chang, Chin-Young;Jin, Kang-Hwan;Kang, Jeong-Nam;Park, Dong-Kyu;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.206-211
    • /
    • 2010
  • Since high-speed train is a dynamic load in which electric power is externally supplied, contact loss between the catenary and pantograph occurs. This phenomena including vibrations generates frequently irregular arcs, which, in turn causes EMI. Thus it is very important to develop the approach to reduce arc phenomenon by contact loss, as speed of electric railway vehicle increases. In case of an electric railway vehicle using electrical power, compared with diesel rolling stock, Power Line Disturbance(PLD) such as harmonics, transient voltage and current, Electromagnetic Interference(EMI), and dummy signal injection etc usually occur. In this study, the dynamic characteristics of a contact wire and a pantograph suppling electrical power to high-speed train are investigated with an electrical response point. To implement power line disturbance induced by contact loss phenomenon for high speed train operation, a hardware simulator which considers contact loss between contact wire and pantograph as well as contact wire deviation is developed. It is confirmed by the experiments that contact loss effect is largely dependent on voltage conditions when the contact loss occurs. Also, a passive filter is designed to reduce power disturbance and the designed system is verified by experiment.

Analysis of conducted noise on modeling methods for loss of contact during traction of high-speed rail vehicle (고속전철 주행시 이선현상 모델링 방법에 따른 전도성 노이즈 해석)

  • Kim, Jae-Moon;Kim, Yang-Soo;Chang, Chin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.72-75
    • /
    • 2008
  • The Electromagnetic Interference(EMI) in railway applications is largely due to doing the power conversion for traction and Auxiliary system on the Highspeed Electric Multiple Unit-400X(HEMU-400X). In order to research on EMI in railway applications, it were included how much the HEMU-400X generates it and it has an effect on the equipments of electric system which resulted from Power Line Disturbance (PLD) phenomenon by the loss of contact during its running. In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated. The analysis of the loss of contact based on Power Simulator program software is performed to develop power line disturbance model suitable for high speed operation. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

  • PDF

Effect of power line disturbance on loss of contact between contact wire and pantograph (전차선-팬터그래프 사이의 이선현상에 따른 전원외란이 보조전원장치에 미치는 영향)

  • Kim, Jae-Moon;Kim, Yang-Soo;Jang, Jin-Young;Gimm, Yoon-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.179-181
    • /
    • 2008
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated. The analysis of the loss of contact based on Power Simulator program software is performed to develop power line disturbance model suitable for high speed operation. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

  • PDF