• Title/Summary/Keyword: Container crane spreader

Search Result 39, Processing Time 0.034 seconds

A study on remove of a swing in spreader of container crane with vision sensors (비젼센서에 의한 컨테이너 크레인 스프레더의 흔들림 제거에 관한 연구)

  • 손정기;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.832-835
    • /
    • 1996
  • The main purpose of this study is to achieve the effective port works by using of container-crane, to disposer of many containers rapidly by using of vision sensor in order to control the swing of spreader. It is examined the possibility of automation in container-crane through a test in the field.

  • PDF

A Study on Control of the Spreader Swing in Container Crane (컨테이너 크레인 스프레더의 흔들림 제어에 관한 연구)

  • Son, Jeong-Gi;Bae, Jong-Il;Lee, Man-Hyung;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1119-1121
    • /
    • 1996
  • The main purpose of this study is to achieve the effective port works by using of container-crane, to disposer of many containers rapidly by using of vision sensor in order to control the swing of spreader. It is examined the possibility of automation in container-crane through a test in the field.

  • PDF

Automatic Landing System of Container Spreader (컨테이너 스프레더의 자동 랜딩 시스템)

  • 박경택;박찬훈;박영근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1688-1692
    • /
    • 2003
  • The automatic Landing system is used for the automatic functions of automatic transfer crane in the automated container terminal. It confirms and adjusts the alignment and pose between spreader and container and accomplishes the automatic loading/unloading job of containers in yard. Specially, it is required in the automated container terminal and is well adapted under the coarse external environments. This system used the laser sensors to recognize the alignment between spreader and container. In this paper the algorithm of recognition of the alignment and pose is presented and the result of its simulation is shown.

  • PDF

Anti-Sway Control System Design for the Container Crane

  • An, Sang-Back;Kim, Young-Bok;Kang, Gi-Bong;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1404-1409
    • /
    • 2003
  • The sway control problem of the pendulum motion of the container crane hanging on the trolley, which transports containers from the container ship to the truck, is considered in this paper. In the container crane control problem, the main issue is to suppress the residual swing motion of the container at the end of the acceleration, deceleration or the case of that the unexpected disturbance input exists. For this problem, in general, the trolley motion control strategy is introduced and applied to real plants. In this paper, we suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, we consider that the length of the rope varies is we design the anti-sway control system based on LMI(linear matrix inequality) approach. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance from simulation and experimental studies.

  • PDF

A Study on Swing Motion Control System Design for the Spreader of the Crane (크레인 스프레더의 Swing Motion 제어에 관한 연구)

  • Chae, G.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.54-60
    • /
    • 2003
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In this paper, we suggest a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we apply the $H_{\infty}$ based control technique to the anti-sway control system design problem. And the experimental result shows that the proposed control system is shown to be useful and robust to disturbances like winds and initial sway motion.

  • PDF

A Study on Swing Motion Control System Design for the Spreader of the Crane with Varying Rope Length (크레인 스프레더의 Swing Motion 제어에 관한 연구 : 로프 길이변화를 고려한 경우)

  • An, S.B.;Chae, G.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 2004
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In this paper, we suggest a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. In this paper, we apply the $H_{\infty}$ based control technique to the anti-sway control system design problem. And the experimental result shows that the proposed control system is useful and robust to disturbances like winds and initial sway motion.

  • PDF

Impact Analysis Using Shock Absorbing System For Spreader (스프레더용 충격흡수장치를 통한 충격해석)

  • 김성윤;한동섭;심재준;한근조;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.745-748
    • /
    • 2002
  • Many malfunctions take place in container crane spreader due to impact. So we designed a 2DOF hydraulic impact absorbing system and studied the change of impulse with respect to the variation of falling height and weight. The falling height becomes higher than 1m and the falling weight goes up heavier than 100kg, the impact absorbing rate was lower. When spreader is bumped against container and impulse force concentrates on one point, impact absorbing equipment would not be operated properly and make some trouble.

  • PDF

A New Anti Sway Control for Container Crane Using PSD Camera and Propellers (PSD 카메라와 프로펠라를 이용한 콘테이너 스웨이 제어)

  • Choe, Yeon-Wook;Lee, Hyung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.958-965
    • /
    • 2007
  • The spreaders on container cranes are usually controlled to stop at the same time as their trolleys are stopped. Despite the use of adequate control systems, however, the spreaders usually have comparatively large sway movements, due to their suspension from the trolleys through cables. It is, therefore, important to accurately measure the attitudes of the spreaders, in order to suppress such sways by means of secondary control. Until now, most of conventional anti sway control systems focus on the direct control of the movements of trolleys. which seems not suitable to speed up the entire process - loading and unloading of containers. In this paper, we suggest a new anti sway control system: By using extra equipments - two propellers to suppress the sway and a PSD camera to measure the spreader's attitude - installed on the spreader and the trolley. the sway of the suspended load j, considerably suppressed. The effectiveness of the proposed scheme is verified by the computer simulation and experiment with the miniature of the container crane system.

A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach (로프 길이변화를 고려한 크레인의 흔들림 제어에 관한 연구: Gain-Scheduling 기법에 의한 제어기 설계)

  • Kim, Y.W.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.58-66
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach (로프 길이 변화를 고려한 크레인의 흔들림 제어에 관한 연구;Gain-Scheduling 기법에 의한 제어기 설계)

  • Kim, Y.W.;Kim, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.631-636
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the experiment result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF