• Title/Summary/Keyword: Contaminant

Search Result 1,023, Processing Time 0.031 seconds

Change of Groundwater Quality derived from Contaminant Sources (오염원에 의한 지하수 수질의 변화)

  • Bae, Sang-Kuen
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.75-75
    • /
    • 1995
  • In order to provide for the guidance on groundwater quality monitoring network design and also, to suggest the index to the solution of the contaminated groundwater remediation problems in the lake watershed, it is necessary to analyze the contaminant transport in the groundwater. The solute transport was analyzed in the lake watershed to investigate the behavior of the injected contaminant sources depend on the relationships between the point of contaminant sources and position of the lake. Three hypothetical groundwater flow systems, which is composed of a flow-through lake and two solute sources, were considered. The lakes located in the upper, middle, and lower portions of a watershed respectively. The transported contaminant was numerically simulated for five years by using MT3D contaminant transport model under the three-dimentional steady state conditions. From the above simulations, it can be concluded that the contaminant concentration was high as the contaminant source located at the upper position of a watershed, and the influence of the contaminant injection was large as the solute source located at the lower position. When the injection of contaminant was continued for one year without regard to the position of contaminant source and the lake, the influence of contaminant source was reached to bedrock.

Change of Groundwater Quality derived from Contaminant Sources (오염원에 의한 지하수 수질의 변화)

  • 배상근
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.461-468
    • /
    • 1995
  • In order to provide for the guidance on groundwater quality monitoring network design and also, to suggest the index to the solution of the contaminated groundwater remediation problems in the lake watershed, it is necessary to analyze the contaminant transport in the groundwater. The solute transport was analyzed in the lake watershed to investigate the behavior of the injected contaminant sources depend on the relationships between the point of contaminant sources and position of the lake. Three hypothetical groundwater flow systems, which is composed of a flow-through lake and two solute sources, were considered. The lakes located in the upper, middle, and lower portions of a watershed respectively. The transported contaminant was numerically simulated for five years by using MT3D contaminant transport model under the three-dimentional steady state conditions. From the above simulations, it can be concluded that the contaminant concentration was high as the contaminant source located at the upper position of a watershed, and the influence of the contaminant injection was large as the solute source located at the lower position. When the injection of contaminant was continued for one year without regard to the position of contaminant source and the lake, the influence of contaminant source was reached to bedrock.

  • PDF

VARIATIONS OF CONTAMINANT RETARDATION FACTOR IN THE PRESENCE OF TWO MOBILE COLLOIDS

  • Kim, Song-Bae;Kim, Dong-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.115-119
    • /
    • 2001
  • Contaminant retardation factor is derived from the colloidal and contaminant transport equations for a four-phase porous medium: an aqueous phase, two mobile colloidal phases, and a solid matrix. It is assumed that the contaminant sorption to solid matrix and colloidal particles and the colloidal deposition on solid matrix follow the linear isotherms. The behavior of the contaminant retardation factor in response to the change of model parameters is examined employing the experimental data of Magee et al. (1991) and Jenkins and Lion (1993). In the four-phase system, the contaminant retardation factor is determined by both the contaminant association with solid matrix and colloidal particles and the colloidal deposition on solid matrix. The contaminant mobility is enhanced when the affinity of contaminants to mobile colloids increases. In addition, as the affinity of colloids to solid matrix decreases, the contaminant mobility increases.

  • PDF

Numerical Study of Contaminant Transport Coupled with Large Strain Consolidation

  • Lee, Jang-Guen
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.45-52
    • /
    • 2008
  • Contaminant transport has been widely studied in rigid porous media, but there are some cases where a large volumetric stain occurs such as dewatering of dredged contaminated sediment, landfill liner, and in-situ capping. This paper presents a numerical investigation of contaminant transport coupled with large strain consolidation. Consolidation test was performed with contaminated sediments collected in Gary, Indiana, U.S. to obtain constitutive relationships, which are required for numerical simulations. Numerical results using CST2 show an excellent agreement with measured settlement and excess pore pressure. CST2 is then used to simulate contaminant transport during and after in-situ capping. Numerical simulations provide that transient advective flows caused by consolidation significantly increase the contaminant transport rate. In addition, the numerical simulations revealed that active capping with Reactive Core Mat (RCM) significantly decelerates consolidation-induced contaminant transport.

지하 하수터널 주변의 오염물 거동해석

  • 정일문;한일영;차성수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.327-330
    • /
    • 2002
  • In this study, analyses of contaminant transport are peformed to evaluate the diffusion effect of A sewage tunnel. First, Crank's analytical method is used to measure the concentration change of contaminant with time and space. Two dimensional numerical analysis is performed to measure concentration distribution of contaminant. Both methods show that the diffusion effect is little even after 500 years. This means that when flow converges into the tunnel, the environmental effect of contaminant in tunnel is not serious because there is no advection occurs.

  • PDF

The Significance of the Analytical Sciences In Environmental Assessment

  • Chung, Yong;Ahn, Hye-Won
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.1079-1087
    • /
    • 1995
  • The quality of human life is directly related to the quality of the environment. To assess environmental quality we must first determine the MCLG(Maximum Contaminant Level Goal), MCL(Maximum Contaminant Level), environmental impact and so on. The MCLG is the concentration at which no known adverse health effects occur. The MCLG is determined by risk assessment identifying which process is hazardous assessing, dose-response, human exposure, and characteristics of risk. With consideration of analytical methods, treatment technology, cost and regulatory impact, the MCL is set as close to the MCLG as possible. In this way, determination of the concentration and national distribution of contaminants is important for assessment of environmental quality The analytical sciences pose potential problems in assessing environmental quality. Continuing improvement in the performance of analytical instruments and operating technique has been lowering the limits of detectability. Contaminant concentration below the detection limit has usually been reported as ND(Not-Detected) and this has often been misunderstood as equivalent to zero. Because of this, more the contaminant concentration in the past was below the detection limit, whereas contaminants can be quantified now even though the contaminant concentration might remain the same or may even have decreased. In addition, environmental sampling has various components due to heterogeneous matrices. These samples are used to overestimate the concentration of the contaminant due to large variability, resulting in excess readings for MCL. In this paper, the significance of the analytical sciences is emphasized in both a conceptual and a technical approach to environmental assessment.

  • PDF

Simulation of Contaminant Draining Strategy with User Participation in Water Distribution Networks

  • Marlim, Malvin S.;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.146-146
    • /
    • 2021
  • A contamination event occurring in water distribution networks (WDNs) needs to be handled with the appropriate mitigation strategy to protect public health safety and ensure water supply service continuation. Typically the mitigation phase consists of contaminant sensing, public warning, network inspection, and recovery. After the contaminant source has been detected and treated, contaminants still exist in the network, and the contaminated water should be flushed out. The recovery period is critical to remove any lingering contaminant in a rapid and non-detrimental manner. The contaminant flushing can be done in several ways. Conventionally, the opening of hydrants is applied to drain the contaminant out of the system. Relying on advanced information and communication technology (ICT) on WDN management, warning and information can be distributed fast through electronic media. Water utilities can inform their customers to participate in the contaminant flushing by opening and closing their house faucets to drain the contaminated water. The household draining strategy consists of determining sectors and timeslots of the WDN users based on hydraulic simulation. The number of sectors should be controlled to maintain sufficient pressure for faucet draining. The draining timeslot is determined through hydraulic simulation to identify the draining time required for each sector. The effectiveness of the strategy is evaluated using three measurements, such as Wasted Water (WW), Flushing Duration (FD), and Pipe Erosion (PE). The optimal draining strategy (i.e., group and timeslot allocation) in the WDN can be determined by minimizing the measures.

  • PDF

Development Of A Windows-Based Predictive Model For Estimating Sediment Resuspension And Contaminant Release From Dredging Operations

  • Je, Chung-Hwan;Kim, Kyung-Sub
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.137-146
    • /
    • 2000
  • A windows-based software package, named DREDGE, is developed for estimating sediment resuspension and contaminant release during dredging operations. DREDGE allows user to enter the necessary dredge information, site characteristics, operational data, and contaminant characteristics, then calculates an array of concentration using the given values. The program mainly consists of the near-field models, which are obtained empirically, for estimating sediment resuspension and the far-field models, which are obtained analytically, for suspended sediment transport. A linear equilibrium partitioning approach is applied to estimate particulate and dissolved contaminant concentrations. This software package which requires only a minimal amount of data consists of three components; user input, tabular output, and graphical output. Combining the near-field and far-field models into a user-friendly windows-based computer program can greatly save dredge operator's, planners', and regulators' efforts for estimating sediment transports and contaminant distribution.

  • PDF

A Prediction of the Indoor Air Movement and Contaminant Concentration in a Multi-Room Condition

  • Song, Doo-Sam;Kang, Ki-Nam;Park, Dong-Ryul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.137-146
    • /
    • 2007
  • CFD simulation is a very useful tool to predict the concentration of contaminant generated from the building materials in a single room. However, there is a limitation on analyzing air movement and contaminant concentration in a multi-room when the door of each room is closed. In this study, network based simulation was coupled with contaminant simulation for the multi-room condition, using an network simulation tool 'ESP-r'. The coupled simulation was first validated with experimental measurements which performed to define the characteristics of the analyzed space prior to the simulation, and indoor air flow and contaminant concentration between rooms were then analyzed when the door of each room was open and closed in the case of natural and forced ventilation.

Comparison of Contaminant Transport between the Centrifuge Model and the Advection Dispersion Equation Model

  • Young, Horace-Moo;Kim, Tae-Hyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.8-12
    • /
    • 2003
  • The centrifuge test result on capped sediment was compared to the advection- dispersion equation proposed for one layered to predict contaminant transport parameters. The fitted contaminant transport parameters for the centrifuge test results were one to three orders of magnitude greater than the estimated parameters from the advection-dispersion equation. This indicates that the centrifuge model over estimated the contaminant transport phenomena. Thus, the centrifuge provides a non-conservative approach to modeling contaminant transport. It should be also noted that the advection-dispersion equation used in this study is a one layered model. Two layered modeling approaches are more appropriate for modeling this data since there are two layers with different partitioning coefficients. Further research is required to model the centrifuge test using two-layered advection-dispersion models.