• 제목/요약/키워드: Continuous Curing

검색결과 69건 처리시간 0.027초

양생 조건이 바닥용 건조 모르타르의 압축강도에 미치는 영향 (Effect of Curing Conditions on Compressive Strength of Dry Mortar for Floor)

  • 정용;김두혁;박창환;조성현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.377-378
    • /
    • 2023
  • This study examined the effect of curing conditions on the compressive strength of dry mortar for floor. The compressive strength according to the relative humidity during curing was compared, and the influence of expansive additives on compressive strength under water curing was reviewed. As a result, low relative humidity conditions during curing was not effective in improving the compressive strength of dry mortar for floor, and it was judged that the continuous hydration reaction insufficient due to lack of the moisture supply. In order to improve compressive strength, high relative humidity maintenance was found to be an important factor. However, under water curing conditions, the compressive strength has decreased as a result of continuous volume expansion due to the use of the expansive additives.

  • PDF

두꺼운 복합재료 실린더의 생산 및 열응력 해석 (Continuous Curing and Residual Stresses of Thick Composite Cylinders)

  • 김철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.49-52
    • /
    • 2000
  • A new composite manufacturing technique which combines winding and curing together is studied and analyzed. This method is especially suited to the manufacture of thick composite materials in which thermal spiking is a common problem. An experimental apparatus was designed and built for use with a filament winder to continuously cure a thick composite cylinder. A hoop-wound composite cylinder with 152 mm wall thickness was manufactured and embedded thermocouples and strain gages were monitored throughout the cure process. The experimental data were compared with analytical results.

  • PDF

광중합기의 광도와 시간에 따른 글래스 아이오노머의 치수내 온도변화 (INTRAPULPAL TEMPERATURE CHANGE OF GLASS IONOMER ACCORDING TO LIGHT CURING INTENSITY AND CURING TIME)

  • 김희량;이형일;이광원;이세준
    • Restorative Dentistry and Endodontics
    • /
    • 제26권5호
    • /
    • pp.387-392
    • /
    • 2001
  • When cavity floor is near the pulp, polymerization of light-activated restorations results in temperature increase. This temperature increase cause by both the exothermic reaction process and the energy absorbed during irradiation. Therefore instating base is required. Most frequently used insulating base is glass ionmer. The purpose of this study was to evaluate intrapulpal temperature changes of glass ionomer according to various curing intensity and curing time. Caries and restoration-free mandibular molars extracted within three months were prepared Class I cavity of 3$\times$6mm with high speed handpiece. 1mm depth of dentin was evaluated with micrometer in mesial and distal pulp horns. Pulp chambers were filled with 37.0$\pm$0.1$^{\circ}C$ water to CEJ. Chromium-alumina thermocouple was placed in pulp horn for evaluating of temperature changes. glass ionomer material was placed in 2mm. total curing time was 40s: continuous 40s, intermittent 20s, intermittent 10s. Glass ionomer material was cured with 300mW/$\textrm{cm}^2$, 550mW/$\textrm{cm}^2$ light curing unit. The results were as follows : 1. Temperature in pulp increased as curing unit power is increased. 2. Temperature in pulp more increased continuous emission than intermittent emission.

  • PDF

Performance of self-curing concrete as affected by different curing regimes

  • El-Dieb, A.S.;El-Maaddawy, T.A.
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.33-41
    • /
    • 2020
  • In this study, polyethylene glycol (PEG) and polyacrylamide (PAM) have been used as self-curing agents to produce self-curing concrete (SC). Compressive strength, ultrasonic pulse velocity (UPV), bulk electrical resistivity, chloride ion penetrability, water permeability, and main microstructural characteristics were examined under different curing regimes, and compared to those of the control concrete mixture with no self-curing agents. One batch of a control mixture and one batch of a SC mixture were air-cured in the lab to act as non-water-cured samples. The water curing regimes for the control mixture included continuous water curing for 3, 7, and 28 days and periodical moist curing using wetted burlap for 3 and 7 days. Curing regimes for the SC mixtures included 3 days of water curing and periodical moist curing for 3 and 7 days. SC mixtures showed better microstructure development and durability performance than those of the air-cured control mixture. A short water curing period of 3 days significantly improved the performance of the SC mixtures similar to that of the control mixture that was water cured for 28 days. SC concrete represents a step towards sustainable construction due to its lower water demand needed for curing and hence can preserve the limited water resources in many parts of the world.

완속기시(Soft-start) 광조사 방식이 복합레진의 중합 및 수축응력에 미치는 효과 (EFFECT OF SOFT-START LIGHT CURING ON THE POLYMERIZATION AND THE CONTRACTION STRESS OF COMPOSITE RESIN)

  • 위유민;오유향;이난영;이창섭;이상호
    • 대한소아치과학회지
    • /
    • 제32권2호
    • /
    • pp.332-343
    • /
    • 2005
  • 본 연구에서는 기존의 할로겐 광중합기를 이용하여 40초간 조사하여 복합레진을 중합한 경우와 플라즈마 광중합기를 이용한 고강도의 중합 및 완속기시 중합 방식, 그리고 LED 광중합기를 이용한 통법의 중합과 완속기시 중합 방식으로 복합레진을 중합하여 발생되는 수축응력을 비교하고 미세경도를 측정하여 중합도를 평가하였다. 내경 7mm, 외경 10mrn의 아크릴릭 주형을 제작하고 외면에 스트레인게이지를 부착시킨 뒤 각각의 광원에 따른 중합모드로 광중합 하였다. 광조사 시점부터 1초 간격으로 600초간 수축응력을 측정하였으며, 중합 24시간 후 각 군의 미세경도를 측정하여 통계 분석하였다. 수축응력 측정 후 시편을 종단하여 주사전자현미경으로 레진수복물과 아크릴릭 주형 계면을 관찰하였다. 이상의 실험을 통해 얻은 결과는 다음과 같다. 1. 플라즈마 광과 LED 광원의 완속기시 중합방식은 각각의 기본 중합방식에 비해 중합 10분 후에 수축응력 감소를 보였다(P<0.05). 2. 완속기시 중합방식의 플라즈마 광이 가장 낮은 수축응력을 보였으나 미세경도 또한 가장 낮았다(P<0.05). 3. 완속기시 중합방식의 LED 광중합은 기존의 할로겐 광과 LED 광중합 방법에 비하여 낮은 수축응력을 보였다(P<0.05). 4. 완속기시 중합방식의 LED 광으로 조사한 시편의 미세경도는 단일광도로 조사한 할로겐 광과 LED 광중합과 비교하여 유의할만한 차이가 나타나지 않았다(P>0.05). 5. 기존의 할로겐 광과 완속기시 중합방식의 LED로 중합한 시편이 플라즈마 광과 단일강도의 LED로 조사한 군보다 더 나은 변연봉쇄를 보였다.

  • PDF

Effect of Steam Curing on Concrete Piles with Silica Fume

  • Yazdani, N.;F. Asce, M. Filsaime;Manzur, T.
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.9-15
    • /
    • 2010
  • Silica fume is a common addition to high performance concrete mix designs. The use of silica fume in concrete leads to increased water demand. For this reason, Florida Department of Transportation (FDOT) allows only a 72-hour continuous moist cure process for concrete containing silica fume. Accelerated curing has been shown to be effective in producing high-performance characteristics at early ages in silica-fume concrete. However, the heat greatly increases the moisture loss from exposed surfaces, which may cause shrinkage problems. An experimental study was undertaken to determine the feasibility of steam curing of FDOT concrete with silica fume in order to reduce precast turnaround time. Various steam curing durations were utilized with full-scale precast prestressed pile specimens. The concrete compressive strength and shrinkage were determined for various durations of steam curing. Results indicate that steam cured silica fume concrete met all FDOT requirements for the 12, 18 and 24 hours of curing periods. No shrinkage cracking was observed in any samples up to one year age. It was recommended that FDOT allow the 12 hour steam curing for concrete with silica fume.

R2R 공정에서 적외선가열과 열풍을 혼합한 건조방식에서 전도성 금속 잉크의 건조 및 큐어링 공정 특성에 관한 실험적 연구 (An Experimental Study on the Drying and Curing Characteristics of Conductive metallic ink using Combined IR and Hot Air Type in the Roll-to-Roll System)

  • 김영모;홍승찬;이재효
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.73-78
    • /
    • 2010
  • This research is about the drying and curing characteristic of conductivity metallic ink on-line curing device in order to improve the curing time for productivity in RFID Gravure printing. The curing process is carried out to increase the electric conductivity after the metallic ink is printed on the substrate. The metal ink is composed of nano-sized silver or copper particles. In this research, the combined IR and Hot air curing system is used and its results is compared with those of oven, IR and Hot Air type respectively. Generally the curing time in the past is about 3 minutes. But the combined system (IR+Hot Air) in this research shows that curing time is less than 30 seconds. These results is much faster than those of other system. This study can be help to make Roll-to-Roll drying and curing process for mass and continuous production on-line.

단계별 광중합 방식이 복합레진 수복물의 수축 응력과 변연 접합도에 미치는 영향 (EFFECT OF STEP CURING ON THE CONTRACTION STRESS AND MARGINAL ADAPTATION OF RESIN RESTORATION)

  • 박종휘;이난영;이상호
    • 대한소아치과학회지
    • /
    • 제33권2호
    • /
    • pp.221-232
    • /
    • 2006
  • 본 연구는 단계별 광중합 방법이 복합레진의 중합 및 수축 응력에 미치는 효과를 비교, 평가하고자 자연치를 대상으로 와동을 형성하고 할로겐 광중합기와 LED 광중합기의 통법에 의한 연속 조사 및 단계별 조사법으로 각각 복합레진을 중합시킨 후 수축 응력을 측정하고 주사전자현미경을 통해 수복물과 와동의 계면부에서 접착 상태를 관찰하여 다음과 같은 결과를 얻었다. 1. 모든 군에서 광중합 직후에는 일시적으로 팽창되었다가 초기에는 급격한 수축 응력의 증가를 보였고 시간이 경과될수록 수축 응력의 증가가 완만해지는 경향을 보였다(P<0.05). 2. 동일한 광조사 군내에서는 hybrid형인 Filtek $Z-250^{TM}$군보다는 flowable형인 $Filtek\;flow^{TM}$군이 더 적은 수축 응력을 보였다. 3. Filtek $Z-250^{TM}$군에서는 LED 단계별 조사군이 수축 응력 이 가장 적게 나타났다(P<0.05) 4. $Filtek\;flow^{TM}$군 역시 LED단계별 조사군이 수축 응력이 가장 작게 나타났으나(P<0.05) Filtek Z-250군에서와 같이 다른 조사군에 비해 많은 차이를 보여주지는 못했다. 5. 주사전자현미경으로 관찰한 복합레진과 와동벽과의 접합 상태는 긴밀한 상태를 보였으나 LED 조사군에서 일부 틈이 관찰되었다. 이상의 결과를 종합해 보면 hybrid형 복합레진의 경우 단계별 중합방식을 사용할 경우 단일광도의 중합방식에 비해 수축 응력을 감소시킬 수 있고 적절한 변연 적합상태를 유지시킴으로써 임상적으로 고광도 LED 광중합기의 경우 단계별 중합방식의 사용이 유리하다고 사료된다.

  • PDF

Development of Efficient Curing Sheet for Thermal Insulation Curing of Concrete in Cold Weather

  • Han, Cheon-Goo;Son, Myung-Sik;Choi, Hyun-Kyu
    • 한국건축시공학회지
    • /
    • 제12권3호
    • /
    • pp.291-298
    • /
    • 2012
  • For cold weather concreting, frost damage at early age is generated in the concrete, and problems such as delaying of setting and hardening and lowering of strength manifestation emerge due to the low outside air temperature at the early stage of pouring, making the selection of an effective curing method critically important. Unfortunately, the tent sheet currently used as the curing film for heating insulation at work sites, not only has the problems of inferior permeability and extremely deteriorated airtightness, but a phenomenon of continuous fracturing is also generated along the direction of fabric of the material itself, presenting difficult circumstances for maintaining adequate curing temperature. The aim of this study was to develop an improved bubble sheet type curing film for heating insulation of cold weather concrete by combining mesh-tarpaulin, which has excellent tension properties, with bubble sheet, which offers superior insulation performance. The analysis showed that the improved curing film in which BBS1 is stacked to MT was a suitable replacement for curing films currently in use, as it has better permeability, tension property, and insulation performance than the T type film used at work sites today.

Relationship between Compressive Strength of Geo-polymers and Pre-curing Conditions

  • Kim, Hyunjung;Kim, Yooteak
    • Applied Microscopy
    • /
    • 제43권4호
    • /
    • pp.155-163
    • /
    • 2013
  • Meta-kaolin (MK) and blast furnace slag (BS) were used as raw materials with NaOH and sodium silicate as alkali activators for making geo-polymers. The compressive strength with respect to the various pre-curing conditions was investigated. In order to improve the recycling rate of BS while still obtaining high compressive strength of the geo-polymers, it was necessary to provide additional CaO to the MK by adding BS. The specimens containing greater amounts of BS can be applied to fields that require high initial compressive strength. Alkali activator(s) are inevitably required to make geo-polymers useful. High temperature pre-curing plays an important role in improving compressive strength in geo-polymers at the early stage of curing. On the other hand, long-term curing produced little to no positive effects and may have even worsened the compressive strength of the geo-polymers because of micro-structural defects through volume expansion by high temperature pre-curing. Therefore, a pre-curing process at a medium range temperature of $50^{\circ}C$ is recommended because a continuous increase in compressive strength during the entire curing period as well as good compressive strength at the early stages can be obtained.