• Title/Summary/Keyword: Contour Error

Search Result 181, Processing Time 0.036 seconds

A Multi-Axis Contour Error Controller for High-Speed/High-Precision Machining of Free form Curves (고속 고정밀의 자유곡선 가공을 위한 다축 윤곽오차 제어)

  • 이명훈;최정희;이영문;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • The growing need for higher precision and productivity in manufacturing industry has lead to an increased interest in computer numerical control (CNC) systems. It is well known fact that the cross-coupling controller (CCC) is an effective method for contouring applications. In this paper, a multi-axis contour error controller (CEC) based on a contour error vector using parametric curve interpolator is introduced. The contour error vector is a vector from the actual tool position to the nearest point on the desired path. The contour error vector is the closest error model to the contour error. The simulation results show that the CEC is more accurate than the conventional CCC for a biaxial motion system. In addition, the experimental results on 3-axis motion system show that the CEC is simply applied to 3-axis motions and contouring accuracy is significantly improved.

A New Contour Error Model for Cross-Coupled Controller in CNC Machine Tools (CNC 공작기계에서 상호결합제어기를 위한 새로운 윤곽오차모델)

  • 이재하;양승한
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.152-157
    • /
    • 2000
  • In the control of CNC machine tools, it is significant for precise machining to reduce the contour error. The object of servo-control is reduction of contour error and tracking error. In past studies, there were two approaches to control a servo-system. One was to eliminate axial tracking errors, and the other was to control contour errors. The Cross-coupled controller(CCC) was introduced fro ma veiwpoint of contour error model. Recently, for machining part with free form surfaces, we propose a new contour error model based on curve interpolator. It is presented here that performance of CCC using proposed model is enhanced. Therefore, we can make more precise parts with the curve interpolator and the new contour error model.

  • PDF

Contour Plots of Objective Functions for Feed-Forward Neural Networks

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.30-35
    • /
    • 2012
  • Error surfaces provide us with very important information for training of feed-forward neural networks (FNNs). In this paper, we draw the contour plots of various error or objective functions for training of FNNs. Firstly, when applying FNNs to classifications, the weakness of mean-squared error is explained with the viewpoint of error contour plot. And the classification figure of merit, mean log-square error, cross-entropy error, and n-th order extension of cross-entropy error objective functions are considered for the contour plots. Also, the recently proposed target node method is explained with the viewpoint of contour plot. Based on the contour plots, we can explain characteristics of various error or objective functions when training of FNNs proceeds.

A Study on Circular Contour Machining Error

  • Namkoong, Chaikwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.100-105
    • /
    • 2002
  • The comprehensive system analysis for contour milling operation and its error has performed in this study. The obtained experimental results were from the practical points of view. In down-milling operation the contour error curve illustrates bigger thean actual workpiece radius. The contour error increased when the cutter loads increased. Through the procedural evaluation, it could ascertain the characteristics of generation mechanics in circular contour machining error, and the weight of each factors.

Cross-coupled Control with a New Contour Error Model (새로운 윤곽 오차 모델을 이용한 상호 결합 제어)

  • 이명훈;손희수;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.341-344
    • /
    • 1997
  • The higher precision in manufacturing field is demanded, the more accurate servo controller is needed. To achieve the high precision, Koren proposed the cross-coupled control (CCC) method. The objective of the CCC is reducing the contour error rather than decreasing the individual axial error. The performance of CCC depends on the contour error model. In this paper we propose a new contour error model which utilizes contour error vector based on parametric curve interpolator. The experimental results show that the new CCC is more accurate than the variable-gain CCC during free-form curve motion.

  • PDF

3-Axis Coupling Controller for High-Precision/High-Speed Contour Machining (고정밀 고속 윤곽가공을 위한 3축 연동제어기)

  • 지성철;구태훈
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.40-47
    • /
    • 2004
  • This paper proposes a three-axis coupling controller designed to improve the contouring accuracy in machining of 3D nonlinear contours. The proposed coupling controller is based on an innovative 3D contour error model and a PID control law. The novel contour error model provides almost exact calculation of contour errors in real-time for arbitrary contours and can be integrated with any type of existing interpolator. In the proposed method, three axes of motion are coordinated by the proposed coupling controller along with a proportional controller for each axis. The proposed contour error model and coupling controller are evaluated through computer simulations. The simulation results show that the proposed 3-axis coupling controller with the new contour error model substantially can improve the contouring accuracy by order of magnitude compared with the existing uncoupled controllers in high-speed machining of nonlinear contours.

Design of Contour Error Models using Contour Error Vector (윤곽오차 벡터를 이용한 윤곽오차 모델 설계)

  • 최정희;이명훈;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.895-898
    • /
    • 2003
  • The higher precision is demanded in modem manufacturing and it requires the more accurate servo controller. Cross-coupling control (CCC) has been developed to improve contouring motion. In this paper we introduce a new nonlinear CCC that is based on contour-error-vector using a parametric curve interpolator. A vector from the actual tool position to the nearest point on the desire path is directly adopted. The contour-error-vector is determined by constructing a tangential vector of nearest point on desired curve and determining the vector perpendicular to this tangential vector from the actual tool position. Moreover, the vector CCC can apply directly and easily to free-form curves include convex and concave form. The experimental results on a three-axis CNC machine center show that the present approach significantly improves motion accuracy in multi-axis motion

  • PDF

Study on the Velocity Trajectory for High Speed and High Precision Machining of CNC Machines (CNC 공작기계의 고속 고정밀 가공을 위한 모서리 속도궤적 연구)

  • Kim, Han-Suk;Jeon, Do-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.14-23
    • /
    • 1999
  • This paper proposes a method to generate the velocity trajectory which guarantees user specified contour errors at corners for high speed and high precision motion control of CNC machines. The relation among the desired trajectory, system bandwidth and corner contour error are derived. Experiments show that the corner contour error specified by users can be guaranteed with the proposed velocity trajectory.

  • PDF

A New Stylization Method using Least-Square Error Minimization on Segmental Pitch Contour (최소 자승오차 방식을 이용한 세그먼트 피치패턴의 정형화)

  • 이정철
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.107-110
    • /
    • 1994
  • In this paper, we describe the features of the fundamental frequency contour of Korean read speech, and propose a new stylization method to characterize the Fø pattern of segments. Our algorithm consists of three stylization processes : the segment level, the syllable level, and the sord level. For stylization of Fø contour in the segment level , we applied least square error minimization method to determine Fø values at initial, medial, and final position in a segment. In the syllable level, we determine the stylized Fø pattern of a syllable using the mean Fø value of each word and style information for each word, syllable and segment, we reconstruct Fø contour of sentences. The simulation results show that the error is less than 10% of the actual Fø contour for each sentence. In perception test, there is little difference between the synthesized speech with the original difference between the synthesized speech with the original Fø contour and the synthesized speech with the stylized Fø contour.

  • PDF

Method of Shape Error Measurement for the Optimal Blank Design of Shapes with 3D Contour Lines (목표윤곽선이 3 차원 곡선인 형상의 최적블랭크 설계를 위한 형상오차 측정법)

  • Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.28-36
    • /
    • 2015
  • After a short review of the iterative optimal blank method, a new method of measuring the shape error for stamped parts with 3D contour lines, which is an essential component of the optimal blank design, is proposed. When the contour line of the target shape does not exist in a plane, but exists in 3D space, especially when the shape of the target contour line is very complicated as in the real automotive parts, then the measurement of the shape error is critical. In the current study, a method of shape error measurement based on the minimum distance is suggested as an evolution of the radius vector method. With the proposed method, the optimal blank shapes of real automotive parts were found and compared to the results of the radius vector method. From the current investigation the new method is found to resolve the issues with the radius vector method.