• 제목/요약/키워드: Coolant Manifold

검색결과 9건 처리시간 0.036초

로켓엔진 헤드용 냉각 매니폴드의 해석 및 시험 (Numerical Study and Firing Test of a Liquid Rocket Engine Head with a Coolant Manifold)

  • 박진수;최지선;유이상;고영성;김선진;신동순
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1021-1025
    • /
    • 2017
  • 열교환기 지상시험 설비의 내구성 확보를 위해 필수적인 냉각수 매니폴드에 대해 열/유동해석을 진행했으며, 분사기와 유로의 배열 등의 형상을 결정해 개발 중인 엔진의 헤드에 적용하였다. 제작된 엔진 헤드에 대한 검증시험이 진행됐으며, 엔진의 분사기면에 도포된 열차단코팅(TBC) 등에서 열적 손상이 확인되지 않았다. 연소시험 결과와 수치해석을 비교하면 냉각수 출구온도가 $15^{\circ}C$ 정도의 차이를 보이지만 냉각수 매니폴드 상부에 위치하는 액체산소 매니폴드, 열 차폐코팅, 화염면의 위치 등을 감안하면 합당한 수준으로 판단된다.

  • PDF

수치해석적 접근을 통한 불꽃점화 엔진의 냉각수 유동특성 개선 (Computational Approach to Improve Coolant Flow Characteristics for the SI Engine)

  • 이상인;박성영
    • 한국산학기술학회논문지
    • /
    • 제10권12호
    • /
    • pp.3553-3558
    • /
    • 2009
  • 불꽃점화 엔진의 냉각수 유동 특성을 개선하기위하여 본 연구가 수행되었다. 배기밸브와 배기 포트의 냉각수 유로에서의 유동특성이 중점적으로 고려되었다. 베이스 모델의 수치해석적 분석에서 2번 실린더의 배기 밸브사이에 유동 정체가 발견되었다. 이러한 문제점을 극복하기 위하여 관련된 냉각수 통로를 재설계하고 최적화 하였다. 또한 배기가스의 온도를 낮추는 냉각수 코어 모델을 설계하기 위하여 배기매니폴드 하부의 냉각수 통로를 보강 설계하였다. 본 연구를 통하여 실린더 헤드와 블록사이의 냉각수 유동을 제어하는 가스킷의 중요성을 확인하였으며, 질량분포의 개선을 통하여 배기밸브 사이와 실린더헤드에서의 유동 특성을 개선하였다.

연료 매니폴드내의 분리판 장착에 따른 분사균일성 비교 (Comparison of Injection Uniformity as the Dividing Plate Installation in Fuel Manifold)

  • 유덕근;조원국;설우석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.130-134
    • /
    • 2006
  • 분사면 냉각성능을 개선하기 위한 액체로켓 엔진 연료 매니폴드내의 분리판 설치에 따른 분사균일성 변화를 관찰하였다. 3차원 전산유동해석으로 5개 후보 설계에 대하여 분사균일성을 비교하였으며 최적설계에 대하여 측정결과와 비교함으로써 해석방법을 검증하였다. case I과 II는 매니폴드로 공급되는 유량 전체가 분리판 아래로만 흘러 유속이 크게 증가한다. 하지만 분리판이 끝나는 지점에서의 유속변화와 분사면 중심에서의 유량의 집중으로 분사균일성이 크게 저하된다. 이에 비해 분리판이 입구에서 떨어져 장착된 case III와 IV는 유동이 분리판 위, 아래로 흐를 수 있어 유량집중이 완화되므로 균일한 분사특성을 가진다. 비교한 5가지 설계 중 냉각성능과 분사균일성 측면에서 case IV가 최적으로 판단된다.

  • PDF

소형 선박용 디젤엔진의 수냉식 열교환기 해석 연구 (Study on Simulation of Water Cooling Heat Exchanger for Small Marine Diesel Engine)

  • 양영준;심한섭
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.201-207
    • /
    • 2012
  • This study was carried out to improve the design of heat exchanger for small marine diesel engine. As air pollutants emitted from small marine diesel engine become international problem, IMO(International Marine Organization) tried to establish severe regulations for NOx reduction. The formation of NOx is affected by cooling system, for instance, such as intercooler, heat exchanger, exhaust manifold, and therefore cooling systems are one of essential parts for design of small marine diesel engine. In this study, heat exchanger for small marine diesel engine was modeled and simulated using CATIA V5R19 and ANSYS FLUENT V.13. Thermal flow simulation for heat exchanger was performed to find the optimal design. As the results, maximum velocity of engine coolant in shell inside was 9.1m/s and it was confirmed that outlet temperature and temperature drop for engine coolant could be calculated by simulating proportional relations of temperature between engine coolant and sea water.

가솔린 엔진에서 배기 온도 저감을 위한 열교환기 설계 최적화 (Design of a Heat Exchanger to Reduce the Exhaust Temperature in a Spark-Ignition Engine)

  • 이석환;박정서;배충식
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.10-17
    • /
    • 2007
  • Design of experiments (DOE) technique has been used to design an exhaust heat exchanger to reduce the exhaust gas temperature under high load conditions in a spark-ignition engine. The DOE evaluates the influence and the interaction of a selected eight design parameters of the heat exchanger affecting the cooling performance of the exhaust gas through a limited number of experiments. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to reduce thermal aging. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, and number of fin), coolant direction, heat exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.

AN EXPLORATORY STUDY OF THE EMISSION REDUCTION TECHNOLOGIES COMPLIANT WITH SULEV REGULATIONS

  • Kim, In Tak;Lee, Woo Jik;Yoon, Jong Seok;Park, Chung Kook
    • International Journal of Automotive Technology
    • /
    • 제2권2호
    • /
    • pp.63-75
    • /
    • 2001
  • This paper describes the development of THC reduction technologies compliant with SULEV regulations. Technologies embodied by the developmental work include improvement of fuel spray atomization, quick warm-up through coolant control shut of, and acceleration of fuel atomization for the fast rise of cylinder head temp inside the water jacket as well as the improvement of combustion state. The technologies likewise entail reduced HC while operating in lean A/F condition during engine warm-up with the cold lean burn technology, individual cylinder A/F control for improvement of catalytic converting efficiency, after-treatment such as thin-wall catalyst, HC-adsorber and EHC and etc, through vehicle application evaluation in cold start. We carried out an experimental as well as a practical study against SULEV regulations, and the feasibility of adopting these items in vehicle was likewise investigated.

  • PDF

메탄올/가솔린 혼합연료의 배기가스 분석 연구 (Analysis of Exhaust Gas of Methanol/Gasoline Fuel Mixture)

  • 홍광표;박명호;김성준
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.339-344
    • /
    • 1997
  • DOHC gasoline engine(4-cylinder in line type, 1600cc) is modified for the experiment to develope an alternative fuel. The modified engine is tested with the various combination of gasoline and methanol. Pollutant emissions of CO and HC are measured at the end of exhaust manifold. The concentration of CO and HC in exhaust gas is greatly reduced with the increase of coolant temperature of engine. HC concentration is reduced until methanol content reaches to thirty percent and then increased with the volumetric percentage of methanol in fuel. On the other hand, the concentration of CO is reduced as the methanol centent is increased up to 20 percent and then it becomes constant even though the methanol content is raised. The effect of engine RPM on the HC and CO exhaust is investigated. HC concentration is reduced as the engine RPM is increased but the typical trends of variation are not found in the measured value of CO concentrations.

  • PDF

소형 선박 디젤엔진의 질소산화물 저감에 관한 연구 (A Study on NOx Reduction for a Small Marine Diesel Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.79-84
    • /
    • 2011
  • Air pollutants from a small marine diesel engine are increasing and the IMO(International Marine Organization) regulation asked for its reduction. In this study, NOx reduction technologies such as improvement of various cooling systems are applied to the small marine diesel engine. The various cooling systems are a intercooler, a heat exchanger for engine coolant, and an exhaust manifold by water cooling. These systems are tested on an engine dynamometer and a exhaust gas analyzer by a marine diesel engine test regulation. Test results are shows that the small marine engine are satisfied the IMO NOx regulations; Tire II.

Cooled EGR 시스템의 EGR률과 연료분사시기가 소형 디젤엔진의 배기 배출물 특성에 미치는 영향에 관한 연구 (Effect of EGR Rate and Injection Timing on the Characteristics of Exhaust Emissions in Light-duty Diesel Engine)

  • 공호정;황인구;고아현;명차리;박심수;임창식
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.7-12
    • /
    • 2012
  • Cooled EGR system is widely used to reduce NOx emissions in diesel engine. But when EGR rate was increased, combustion stability was worsened and PM level was increased. So determining optimized control point of EGR rate is important. In order to determine this point, it is important to figure out the effect of EGR system on the exhaust emissions. In this research, NOx and PM emissions were analyzed with various coolant temperature supplied to the EGR cooler at several positions such as downstream of turbocharger, upstream and downstream of DPF. Effects of some variables such as EGR rate, hot / cooled EGR and change of injection timing were estimated. And $CO_2$ emissions were measured at exhaust and intake manifold to calculate EGR rate at each engine operating condition. Also combustion analysis was performed in each engine operating conditions. In the result of this study, there was trade-off between NOx emissions and PM emissions. When EGR rate was increased, combustion pressure was decreased and COV of IMEP was increased.