• Title/Summary/Keyword: Cooling%26Heating

Search Result 111, Processing Time 0.027 seconds

Experimental Study of Cooling Energy Saving Verification Using Blinds and Phase Change Material(PCM) (창호 블라인드와 상변화물질 적용에 의한 냉방 에너지 사용량 절감효과에 대한 검토 연구)

  • Song, Young-Hak;Kim, Ki-Tae;Koo, Bo-Kyung;Lee, Keon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2014
  • This study looks into changing building energy use by application of phase change material (PCM). PCM does not need extra energy for operation and is used for reducing building energy use and, CO2 output by displaying semi-permanent effects after installation. It also is able to avoid the maximum electric power time-zone by inducing a time lag phenomenon of cooling and heating loads with high thermal capacity using latent heat. To verify the efficiency of blinds and PCM, tests about the PCM operation mechanism using air conditioning machinery and nocturnal panel cooling were done. In the test results of the case using PCM installation, a $45^{\circ}$ blind angle with machinery air conditioning and nocturnal panel cooling at the same time shows a 22 percent energy saving effect against general space. The test results of each case were compared and analyzed based on the blind and window opening settings. Finally, the energy reduction of existing buildings using PCM application was reviewed based on the final measurement results.

An Experimental Study on the Heating Performance Characteristics of a Vapor Injection Heat Pump for Electric Vehicles (가스 인젝션을 적용한 전기자동차용 히트펌프의 난방성능 특성에 대한 실험적 연구)

  • Kim, Dongwoo;Jung, Jongho;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.308-314
    • /
    • 2014
  • A heat pump has been considered as a thermal management unit for electric vehicles, including the heating and cooling of the cabin. However, the heat pump shows performance degradation at low outdoor temperatures or high compressor speeds. In this study, a R-134a heat pump for an electric vehicle was designed to improve system efficiency, by applying vapor injection with an internal heat exchanger. The heating performance characteristics of the vapor injection heat pump were analyzed at various compressor speeds and outdoor temperatures. The vapor injection heat pump showed 13.3% COP improvement over the non-injection heat pump, when the heating capacity was fixed at 5.2 kW. In addition, the heating capacity of the vapor injection system increased by 9.6%, as compared to the non-injection system.

An Experimental Study on the Cooling Characteristics of the Liquid Cooling Radiator of the Natural Convection Type by Using the PCM (PCM을 적용한 자연대류형 수냉식 방열기의 냉각특성에 관한 실험적 연구)

  • Sung, Dae-Hoon;Kim, Joung-Ha;Yun, Jae-Ho;Kim, Woo-Seung;Peck, Jong-Hyeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.324-329
    • /
    • 2008
  • The liquid cooling effect of a natural convection type radiator by using the PCM has been investigated experimentally. The radiator size is $423{\times}295{\times}83$ mm and PCM container size is $398{\times}270{\times}26$ mm. The objective is elapsed time higher than maximum time to reach for maximum operating temperature of a general liquid cooling radiator. This study, in order to study on the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, ambient and melting point of three type PCM. For the above experimental parameter, the melting time was performed about 180/250/560 min at input power 150 W and ambient $30^{\circ}C$ from using the three type PCM(PCM_S1/S2/S3) respectively. Furthermore, the effects of the thermal dissipation was decreased higher input power than lower input power at heating block and melting time of PCM. However, the effects of mass flow rate did not nearly affect of the thermal performance especially.

  • PDF

Analysis of Thermal Performance of Ground-Source Heat Pump System (지열 이용 히트펌프 시스템의 열성능 해석)

  • Shin, U-Cheul;Baek, Nam-Choon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHF) system. The calculation was performed for two design factors: the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model of water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

Heating Performance of Geothermal Heat Pump System Applied in Cold Climate Region(Mongolia) (한랭지(몽골) 지열 히트펌프 시스템의 난방 성능 분석)

  • Sohn, Byonghu;Choi, Jae Ho;Min, Kyung Chon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • Geothermal heat pump (GHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. These systems use the ground as a heat source in heating mode operation and a heat sink in cooling mode operation. The aim of this study is to evaluate the heating performance of the GHP system for a residential building ($420m^2$) in Ulaanbaatar, Mongolia. In order to demonstrate the feasibility of a sustainable performance of this system, we installed the water-to-water geothermal heat pump with ten vertical ground heat exchangers and measured operation parameters from October 19, 2013 to March 26, 2014. The results showed that the entering source temperature of brine from the ground heat exchangers was in a range of the design target temperature of $-10^{\circ}C$ for heating. For total values of the representative results, the ground heat exchangers extracted heat of 53.51 MWh from the ground. In addition, the GHP system supplied heat of 83.55 MWh to the building and consumed power of 30.27 MWh. Consequently, the average heating seasonal performance factor ($SPF_h$) of the overall system was evaluated to be 2.76 during the measurement period of the heating season.

An Experimental Study on the Performance Improvement of an R32 Inverter Heat Pump System (R32 인버터 히트펌프 시스템의 성능향상에 관한 실험적 연구)

  • Park, Yun Ki;Ha, Man Yeoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.547-552
    • /
    • 2014
  • As global warming in recent years has raised ever more critical concern, refrigerants with high global warming potentials (GWP) are facing the challenge of being phased out. R410A, with a GWP of 2,088, has been widely used in residential air-conditioning and heat pump systems. A potential substitute for R410A is R32, which has a GWP of 675. The present study presents experimental results of an inverter heat pump system that uses R32 as an alternative refrigerant to R410A. Drop-in tests with R32 indicated that the energy efficiency ratio of the system increased by 5.3% in cooling standard mode, and by 4.2% in heating standard mode at the same capacity; and that the cooling and heating capacity increased by about 12% at the same compressor operating frequency, while the annual performance factor (APF) of the system increased by 5.3%.

Analysis of Energy Performance for Dynamic Windows on Office Buildings (사무소 건축물에서 다이나믹 윈도우의 에너지 성능 분석)

  • Park, Yool;Park, Kyung-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.481-485
    • /
    • 2014
  • Low solar gain glazing should be applied on windows in order to reduce the solar radiation load. In a country where a cooling and a heating load coexist throughout the year, such as in Korea, a high solar gain glazing is need to reduce the heating load, but a low solar gain glazing should be applied to reduce the cooling load. Recently, dynamic windows have been developed for which the solar shading performance switches according to the amount of solar radiation flowing into the indoor space through the glazing, and these have been used in building to solve such problems. The purpose of this research is to analyze the energy performance of the electrochromic glazing for dynamic windows that has been extensively commercialized for office buildings in Incheon and Ulsan through an energy simulation implemented in the eQUEST program.

A Study on Change in Window Transmitted Solar and the Resultant Wall Surface Convective Heat Gain with Regard to Slat Reflectance of External and Internal Blinds (실내·외 블라인드의 Slat 반사율에 따라 창호 일사투과량 및 그에 따른 벽체 대류열획득량 분석)

  • Hyun, In-Tak;Lee, Jae-Ho;Yoon, Yeo-Beom;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.565-571
    • /
    • 2014
  • Nowadays, to make buildings light weight and aesthetically pleasing, curtain wall structure are commonly used. Therefore, window to wall ratio is increasing, which has caused cooling and heating load in crease in buildings as well. This phenomenon has negative impact from energy point of view. This paper analyzes window and wall convective heat gain when the slat reflectance of external and internal blinds are changed for the better understanding of the fundamentals behind the phenomena. It was observed that, if slat reflectance is increased, window transmitted solar increases and convection heat rate is clearly affected. Among six surfaces including four walls, ceiling and floor, maximum convection heat rate occurs on the south wall in summer. On the other hand, ceiling and floor showed the lowest convection heat gain, since they are shared by adjacent floors.

A Case Study on Energy Performance Analysis of Retrofitted Building Using Inverse Model Toolkit (Inverse Model Toolkit을 이용한 리모델링 건축물의 에너지 성능평가 사례)

  • Kwon, Kyung-Woo;Lee, Suk-Joo;Park, Jun-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.394-400
    • /
    • 2014
  • Several models and methods have been developed to verify the improvement of energy performance in retrofit buildings. The verification is important to confirm the effectiveness of new technologies or retrofits. Inverse model toolkit proposed by ASHRAE evaluates the changes of the energy performance of retrofit buildings by using actual energy consumption data. In this study, the inverse model toolkit was used to analyze heating and cooling energy performance of an office building. Analyzed coefficients of correlation of actual energy consumption with estimated energy consumption was above 0.92 and well fitted. It was confirmed that energy consumption of natural gas decreased by 43.4% and also that electricity decreased by 13.8%, after the retrofit of the case building. For the energy usage, cooling energy was increased by 7.4%, heating energy was decreased by 42.3%, hot water and cooking were increased by 3.4%, lighting and electronics were decreased by 19.3%, and the total energy was decreased by 18.9%.

Two Way Set Temperature Control Impact Study on Ground Coupled Heat Pump System Energy Saving (양방향 설정온도 제어에 따른 지중연계 히트펌프 시스템의 에너지 절감량 평가 연구)

  • Kang, Eun-Chul;Lee, Euy-Joon;Min, Kyong-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • Government has recently restricted heating and cooling set temperatures for the commercial and public buildings due to increasing national energy consumption. The goal of this paper is to visualize a future two way indoor set temperature control impact on building energy consumption by using TRNSYS simulation modeling. The building was modelled based on the twin test cell with the same dimension. Air source ground coupled heat pump performance data has been used for modeling by TRNSYS 17. Daejeon weather data has been used from Korea Solar Energy Society. The heating set temperature in the reference room is $24^{\circ}C$ as well as the target room set temperature are $23^{\circ}C$, $22^{\circ}C$, $21^{\circ}C$ and $20^{\circ}C$. The cooling set temperature of the reference room is also $24^{\circ}C$ as well as the target room set temperature of $25^{\circ}C$, $26^{\circ}C$, $27^{\circ}C$ and $28^{\circ}C$. For the air source heat pump system, heating season energy consumption is $35.52kWh/m^2y$ in the reference room. But the heating energy consumption in the target room is reduced to 7.5% whenever the set temperature decreased every $1^{\circ}C$. The cooling energy consumption in the reference room is $4.57kWh/m^2y$. On the other hand, the energy consumption in the target room is reduced to 22% whenever the set temperature increased every $1^{\circ}C$ by two way controller. For the geothermal heat pump system, heating energy consumption in the reference room is reduced to 20.7%. The target room heating energy consumption is reduced to 32.6% when the set temperature is $22^{\circ}C$. The energy consumption in the target room is reduced to 59.5% when the set temperature is $26^{\circ}C$.