• Title/Summary/Keyword: Cooling Crystallization

Search Result 88, Processing Time 0.026 seconds

An Effect on the Solution Crystallization Temperature Difference and Cooling Capacity of the Absorption Chiller by a Solution Cooler in the Absorber (흡수기내 용액 냉각기가 흡수식 냉동기의 용액 결정화 온도차와 냉각 용량에 미치는 효과)

  • Chin, Sung-Min;Lee, Jae-Heon;Jurng, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1518-1523
    • /
    • 2003
  • The objective of the present work is to investigate an effect on the solution crystallization temperature difference and the cooling capacity of the absorption chiller by a solution cooler in the absorber. The cooling capacity of the absorption chiller can be higher, with the enhanced performance of the solution heat exchangers. But, because the solution crystallization temperature difference becomes smaller at the absorber inlet, the heat capacity of the solution heat exchangers might be limited by the danger of crystallization, which can cause the serious damages. In this paper, the heat capacity ratio of the solution cooler is defined as the ratio of the heat capacity of the solution cooler to that of the absorber. If it becomes larger in the additional type solution cooler, the solution crystallization temperature difference is augmented and the cooling capacity is also increased.

  • PDF

Synthesis and Non-Isothermal Crystallization Behavior of Poly (ethylene-co-1,4-butylene terephthalate)s

  • Jinshu Yu;Deri Zhou;Weimin Chai;Lee, Byeongdu;Le, Seung-Woo;Jinhwan Yoon;Moonhor Ree
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • A series of random poly(ethylene-co-1,4-butylene terephthalate)s (PEBTs), as well as poly(ethylene terephthalate) (PET) and poly(1,4-butylene terephthalate) (PBT), were synthesized by the bulk polycondensation. Their composition, molecular weight, and thermal properties were determined. All the copolymers are crystallizable, regardless of the compositions, which may originate from both even-atomic-numbered ethylene terephthalate and butylenes terephthalate units that undergo inherently crystallization. Non-isothermal crystallization exotherms were measured over the cooling rate of 2.5-20.0 K/min by calorimetry and then analyzed reasonably by the modified Avrami method rather than the Ozawa method. The results suggest that the primary crystallizations in the copolymers and the homopolymers follow a heterogeneous nucleation and spherulitic growth mechanism. However, when the cooling rate increases and the content of comonomer unit (ethylene glycol or 1,4-butylene glycol) increases, the crystallization behavior still becomes deviated slightly from the prediction of the modified Avrami analysis, which is due to the involvement of secondary crystallization and the formation of relatively low crystallinity. Overall, the crystallization rate is accelerated by increasing cooling rate but still depended on the composition. In addition, the activation energy in the non-isothermal crystallization was estimated.

SEPARATION OF CsCl FROM LiCl-CsCl MOLTEN SALT BY COLD FINGER MELT CRYSTALLIZATION

  • Versey, Joshua R.;Phongikaroon, Supathorn;Simpson, Michael F.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.395-406
    • /
    • 2014
  • This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%), cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min), and separation times (5, 10, 15, and 30 min). Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

Non-isothermal Crystallization Behavior of Poly(glycolide-co-ε-caprolactone-co-L-lactide) Block Copolymer (생체분해성 Poly(glycolide-co-ε-caprolactone-co-L-lactide) 블록 공중합물의 비등온 결정화 거동에 관한 연구)

  • Choi, Sei-Young;Song, Seung-Ho
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • In this work, glycolide, L-lactide and ${\varepsilon}$-caprolactone monomers were polymerized into the triblock copolymers by two step polymerization method and their non-isothermal crystallization behaviors were studied by combination of modified Avrami and Ozawa formula for further analysis of their behaviors. The result showed that PGCLA21 gave the highest value for supercooling analysis and super cooling degree increased with L-lactide content. Crystallization velocity constant, however, showed no significant change. The result of cooling function in specific relative crystallization degree showed that the increase of L-lactide content made an effect on the more enhancement of crystallization velocity of the PGCLA than PGCL. The result of big logF(T) value with the L-lactide content above critical point for PGCLA41 and PGCLA21 showed that bigger cooling velocity needed to gain same crystal size compared with PGCL. This means that it gives negative effect in the increase of crystallization velocity.

A Study on Separation of Naphthalene from Naphthalene and 2-Methylnaphthalene Mixture by Melt and Solution Crystallization (용액과 용융결정화에 의한 나프탈렌과 2-메틸나프탈렌 혼합물로부터 나프탈렌의 분리에 관한 연구)

  • Kim, Sung-Il;Jeong, Kwang-Eun;Chae, Ho-Jeong;Jeong, Soon-Yong;Kim, Chul-Ung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.232-239
    • /
    • 2008
  • Separation of naphthalene from naphthalene and 2-methylnaphthalene mixture has been studied by layered melt and solution crystallization using ethylalcohol. Purity and yield of naphthalene depended mainly on the cooling rate: The effective distribution coefficient ($K_{eff}$) as the degree of impurity removal was observed to decrease with the decreasing in cooling rate. Purity of naphthalene can be enhanced to $5{\sim}7%$ by melt crystallization using 90% naphthalene and the purity of naphthalene can be obtained to be 99% up by solution crystallization.

Effect of Crystallization of Matrix Phase on the Fracture Toughness of Silicon Nitride Ceramics (질화규소 요업체의 기지상 결정화가 파괴인성에 미치는 영향)

  • 김남균;김도연;강대갑
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.364-368
    • /
    • 1987
  • The Si5AION7 specimens containing 20% YAG composition have been sintered and then heat treated to induce the crystallization of the matrix glassy phase. Crystallization of YAG phase during the heat treatment was detected from the X-ray diffraction patterns and the consequent changes in room temperature toughness as well as in microstructures were investigated. Almost all the glassy boundary phase were found to crystallize even after 5 minutes of heat treatment and the KC at room temperature decreased accordingly. The results show that the matrix crystallization can be induced by slow cooling from the sintering temperature.

  • PDF

Non-isothermal Crystallization Behaviors of Ethylene-Tetrafluoroethylene Copolymer (에틸렌-테트라플르오르에틸렌 공중합체의 비등온 결정화 거동)

  • Lee, Jaehun;Kim, Hyokap;Kan, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.803-809
    • /
    • 2012
  • The non-isothermal crystallization behavior of ethylene-tetrafluoroethylene (ETFE) copolymer was investigated by DSC and imaging FTIR analysis. Modified non-isothermal Avrami analysis was applied to interpret the crystallization behavior of ETFE. It was found that the less linearity in ln[-ln(1-X(t))] vs. ln(t) plot was obtained in thermal analysis comparison with imaging FTIR due to relatively small crystallization enthalpy change in ETFE. It means that imaging FTIR measured by overall IR absorption intensity change due to the crystallization was found to be effective to understand the non-isothermal crystallization kinetics of ETFE. In addition, the optical transmittance of ETFE was studied. The crystallite developed by slow cooling caused the light scattering and resulted in the increase of haze and the lowering of transmittance up to 8%. From our results, it was confirmed that cooling rate is an important processing parameter for maintaining optical transmittance of ETFE as a replacement material for glass.

Effect of Activation Energy and Crystallization Kinetics of Polyethylenes on the Stability of Film Casting Processes

  • Lee, Joo-Sung;Cho, Joon-Hee
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • Effect of activation energy and crystallization kinetics of polyethylenes (PEs) on the dynamics and stability has been investigated by changing rheological properties and crystallization rate in film casting process. The effect of changes of these properties has been shown using a typical example of short-chain branching (SCB) in linear polyethylenes. SCBs in linear polymers generally lead to the increase of the flow activation energy, and to the decrease of the crystallization rate, making polymer viscosity lower in the case of equivalent molecular weight. In general, the increment of the crystallinity of polymers under partially crystallized state helps to enhance the process stability by increasing tension, and lower fluid viscoelasticity possesses the stabilizing effect for linear polymers. It has been found that the fluid viscoelasticity plays a key role in the control of process stability than crystallization kinetics which critically depends on the cooling to stabilize the film casting process of short-chain branched polymers operated under the low aspect ratio condition.

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF

Purification of Naphthalene from Naphthalene and 2-methylnaphthalene System by Layer MelMelt-Crystallization (경막형 용융결정화에 의한 나프탈렌과 2-메틸나프탈렌 혼합물로부터 나프탈렌의 분리)

  • Koh, Joo-Young;Kim, Chul-Uog;Park, So-Jin
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.157-164
    • /
    • 2006
  • In order to purify 2-methylnaphthalene as main impurity included in naphthalene, SLE (solid-liquid equilibria) on two components system including naphthalene and 2-methylnaphthalene were measured and a layered melt crystallization has been studied. SLE in the present system is shown a simple eutectic mixture and the experimental results using DSC method is similar to the static method. Purity and yield of naphthalene in crystal depended mainly on the cooling rate: Increasing cooling rate, the purity of naphthalene in crystal increase, whereas the yield of that decrease. The effective distribution coefficient (Keff) as the degree of impurity removal was observed to decrease with decreasing of cooling rate. Therefore, the purity of naphthalene by melt crystallization can be enhanced to 5~7 %.

  • PDF