• Title/Summary/Keyword: Core shape

Search Result 757, Processing Time 0.025 seconds

A Study on the Propagation Characteristics of W-type Single Mode Fiber with Dual Shape Core (이중형코어를 갖는 W형 단일모드 광섬유의 전파특성에 대한 연구)

  • 김정근;이대형;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.1
    • /
    • pp.57-63
    • /
    • 1991
  • In this paper, propagation characteristics of W-type single mode fiber with dual shape core is investigeted theoretically. Design parameters of DSC(dual shape core) W-type single mode fiber with very low dispersion over a wide wavelength range are computed using scalar approximation. The results have larger core radius and stronger confinement for mode field distribution in core than conventional W-type fiber with single shape core.

  • PDF

A Study on the Improvement of the Shape Accuracy of Plastic Lens by Compensation Program (보정 프로그램을 이용한 Plastic 렌즈 Core의 보정에 관한 연구)

  • Woo, Sun-Hee;Lee, Dong-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.112-118
    • /
    • 2008
  • In order to meet the optical performance in the process of the micro lens manufacturing with plastics, it is important to embody accuracy in shape and surface roughness to the intended design. Since it is difficult to machine exactly the mold core of lens fit to the designed shape, in this paper, a simple program using MATLAB is developed for shape correction of the mold core after first machining it. This program evaluates correction parameters(aspheric coefficients and curvature) and generates aspheric NC data for compensating the core surface in prior machining process. The program provides the way to manufacture plastic injection molding lens with aspheric shape of high precision, and is expected to be effective for correction and to shorten the processing time.

Experimental Study on Shape Machining Characteristics of Composite Honeycomb Core (복합재 하니콤 코어의 형상가공 특성에 관한 실험적 연구)

  • Han, Seung-Woo;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.28-35
    • /
    • 2014
  • A composite honeycomb core is widely used for lightweight aircraft materials. However, the composite honeycomb core coupled with metal-cutting machining processes does not make a very good match. This paper describes an experimental study of the shape-machining characteristics of a composite honeycomb core, in which a five-axis gantry machine is used. The experimental conditions of the offset allowance, tooling condition and feed rate were applied. The shape machining characteristics of a flat surface, a vertical surface, and a concave surface are evaluated by comparing the machining shape and burr characteristics.

A Study on the Core Characteristics of Irregular-Shaped High-rise Buildings (비정형 초고층건물의 코어 특성에 관한 연구)

  • Jang, In-Sun;Im, Ja-Eun;Park, Sang-Min
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.13-24
    • /
    • 2019
  • The history of tall buildings begins in 1853with the development of elevators. After the Industrial Revolution of the 18th century, the development of high-rise buildings will be carried out in earnest as a means to efficiently use the limited land of cities. The development, which began around Chicago, extended over a long period of time to Asia, maximizing the high competition. However, in the 2000s, not only was it high due to the development of construction and digital technology, but it also became competitive in eco-friendly elements and unstructured forms. High-rise building plans that have gained elemental and morphological diversity are completed by the interrelationships of various plans. Among them, it is important that the core plan has a reasonable approach from the initial planning stage as the basis for the vertical copper plan linking vertically-intensive functions. The cores should be designed to be clear and adequately responsive to changes in the shape of the building. This study aims to provide designers with a reasonable understanding of core planning by identifying core characteristics of irregular high-rise. In particular, we want to analyze the shape of the ground layer core and the relationship between the area and components of the ground layer core. The analysis results are as follows, classified according to the type or use of the building. Of the atypical forms composed of double bending, the TAPER-Curve and TWIST forms are the most distributed, and the plane and core shapes of the ground floor are the most commonly used. Based on the analysis of the validity of the ground floor cores by shape of the cores, the most commonly used forms for core shapes in the planning of the atypical high-rise are square, circular and Oval, and the most efficient oval cores and relatively inefficient ones when planned.

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

The Effect of Shape of Core Cell on Shock Absorption Characteristics of Biomimetically Inspired Honeycomb Structures

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.103-108
    • /
    • 2011
  • The effect of the core cell shape on shock absorption characteristics of biomimetically inspired honeycomb structures has been numerically investigated. The finite element models of honeycomb test specimen composed of five core cells of identical mass have been constructed, and numerical simulations have been run on PAMCRASH. The dimensions of the sides of core cells as well as the angle between the sides have been shown to influence the shock absorption characteristics of the honeycomb structure. The specimen with regular hexagonal core cell shape is found to show the best shock absorbing capacity, and specimen with rectangle-like core cell are found to provide good shock absorbing characteristics.

  • PDF

Analysis of Back EMF and Torque in Interior Permanent Magnet BLDC Motors (INTERIOR 영구자석 BLDC MOTOR의 역기전압과 토오크에 관한 분석)

  • Sung, Bu-Hyun;Ku, Ja-Nam;Kim, Chang-Jun;Lee, Jin-Won;Kim, Sung-Min;Bae, Gun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.877-879
    • /
    • 1995
  • In this study, we developed the efficient brushless DC motor for a compressor of air conditioner. The characteristics of motor are under the control of the material of some parts and the shape of magnet. Especially we compared the interior shape to the surface shape of the magnet. And we optimized the parameters like the temperature and the materials of magnet and core by tool for more efficient motor.

  • PDF

Analysis of the Static Behavior of Tilted Structure with Dual-Core by Core Location (이중코어를 가진 경사진 형상 구조물의 코어 배치에 따른 역학적 거동 분석)

  • Kim, Min-Seok;Lee, Da-Hye;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.71-78
    • /
    • 2023
  • Recently, Free-Form and Irregular Shape high-rise buildings are constructed by IT technology development. Tilted shaped high-rise building which is one of Irregular shape high-rise buildings can cause lateral displacement by gravity load and lateral load due to tilted elevation shape. Therefore, it is necessary to review the behavior and structural aspects of the Tilted shape high-rise building by gravity load. In this paper, the dynamic characteristics of a tilted structure with a dual-core were analyzed with the core location as a design variable, and response behavior, vulnerable members, and vulnerable layers to earthquake loads were analyzed. As a result of the analysis, as the location of the core moved in an tilted direction, the eccentric distance and eccentric load decreased, reducing the axial force of the vertical members. However, the location of the core had little effect on the response.

Effects of Core Pin Shape on the Filling Imbalances of PA6 Molding (러너 코어핀 형상이 PA6 성형품의 충전불균형도에 미치는 영향)

  • Jeong Y.D.;Kang C.M.;Je D.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.706-709
    • /
    • 2005
  • Despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed in multi-cavity injection mold. These filling imbalances are results from non-symmetrical shear rate distribution within melt as it flows through the runner system. It has been possible to decrease filling imbalance by optimizing processing conditions, but it has not completely eliminated this phenomenon during the injection molding processing. This paper presents a solution of these filling imbalances by using runner core pin which creates a symmetrical shear distribution within runner and the effects on filling imbalance when modifying a shape of runner core pin. As a result of using runner core pin, a remarkable improvement in reducing filling imbalance was confirmed. In addition we investigated how filling imbalances were affected by shape of runner core pin.

  • PDF

Effect of Applying Pressure of High Pressure Diecasting Process Using Salt core (용탕단조 시 저온염코어 적용 가압력의 영향)

  • Lee, Jun-Ho;Moon, J.H.;Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.136-140
    • /
    • 2008
  • A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy, was introduced to produced an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The main goal of this study is to develop a new integrated net-shape forming technology using fusible core of lower melting temperature than that of a casting alloy. This integrated net-shape forming technology would be very successful and cost-effective for producing the integrated products having a complicated inner shape or requiring under-cut. The technology for measuring and evaluating a various property of fusible core such as a thermal conductivity and thermal expansion coefficient, melting temperature was established. Also, the work space can be cleaned without a pollution inducing products.