• Title/Summary/Keyword: Correlated wind sources

Search Result 15, Processing Time 0.021 seconds

A Probabilistic Approach to Small Signal Stability Analysis of Power Systems with Correlated Wind Sources

  • Yue, Hao;Li, Gengyin;Zhou, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1605-1614
    • /
    • 2013
  • This paper presents a probabilistic methodology for small signal stability analysis of power system with correlated wind sources. The approach considers not only the stochastic characteristics of wind speeds which are treated as random variables with Weibull distributions, while also the wind speed spatial correlations which are characterized by a correlation matrix. The approach based on the 2m+1 point estimate method and Cornish Fisher expansion, the orthogonal transformation technique is used to deal with the correlation of wind farms. A case study is carried out on IEEE New England system and the probabilistic indexes for eigenvalue analysis are computed from the statistical processing of the obtained results. The accuracy and efficiency of the proposed method are confirmed by comparing with the results of Monte Carlo simulation. The numerical results indicate that the proposed method can actually capture the probabilistic characteristics of mode properties of the power systems with correlated wind sources and the consideration of spatial correlation has influence on the probability of system small signal stability.

Impacts of Wind Power Integration on Generation Dispatch in Power Systems

  • Lyu, Jae-Kun;Heo, Jae-Haeng;Kim, Mun-Kyeom;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.453-463
    • /
    • 2013
  • The probabilistic nature of renewable energy, especially wind energy, increases the needs for new forms of planning and operating with electrical power. This paper presents a novel approach for determining the short-term generation schedule for optimal operations of wind energy-integrated power systems. The proposed probabilistic security-constrained optimal power flow (P-SCOPF) considers dispatch, network, and security constraints in pre- and post-contingency states. The method considers two sources of uncertainty: power demand and wind speed. The power demand is assumed to follow a normal distribution, while the correlated wind speed is modeled by the Weibull distribution. A Monte Carlo simulation is used to choose input variables of power demand and wind speed from their probability distribution functions. Then, P-SCOPF can be applied to the input variables. This approach was tested on a modified IEEE 30-bus system with two wind farms. The results show that the proposed approach provides information on power system economics, security, and environmental parameters to enable better decision-making by system operators.

Localization of Acoustic Sources on Wind Turbine by Using Beam-forming Techniques (빔-형성 기법을 이용한 풍력 터빈 음원의 국부화)

  • Lee, Gwang-Se;Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.809-815
    • /
    • 2009
  • The previous work(Cheong et al., 2006) where the characteristics of acoustic emissions of wind turbines has been investigated according to the methods of power regulation, has showed that the acoustic power of wind turbine using the stall control for power regulation is more correlated with the wind speed than that using the pitch control. In this paper, basically extending this work, the noise generation characteristics of large modern upwind wind turbines are experimentally indentified according to the power regulation methods. To investigate the noise generation mechanisms, the distribution of noise sources in the rotor plane is measured by using the beam-forming measurement system(B&K 7768, 7752, WA0890) consisting of 48 microphones. The array results for the 660 kW wind turbine show that all noise is produced during the downward movement of the blades. This result show good agreement with the theoretical result using the empirical formula with the parameters: the convective amplification; trailing edge noise directivity; flow-speed dependence. This agreement implies that the trailing edge noise is dominant over the whole frequency range of the noise from the 660 kW wind turbine using the pitch control for power regulation.

Localization of Acoustic Sources on Wind Turbine by Using Beam-forming Techniques (빔-형성 기법을 이용한 풍력 터빈 음원의 국부화)

  • Lee, Gwang-Se;Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.63-67
    • /
    • 2009
  • The previous work (Cheong et al., 2006) where the characteristics of acoustic emissions of wind turbines has been investigated according to the methods of power regulation, has showed that the acoustic power of wind turbine using the stall control for power regulation is more correlated with the wind speed than that using the pitch control. In this paper, basically extending this work, the noise generation characteristics of large modern upwind wind turbines are experimentally indentified according to the power regulation methods. To investigate the noise generation mechanisms, the distribution of noise sources in the rotor plane is measured by using the Beam-forming measurement system (B&K 7768, 7752, WA0890) consisting of 48 microphones. The array results for the 660 kW wind turbine show that all noise is produced during the downward movement of the blades. This result show good agreement with the theoretical result using the empirical formula with the parameters: the convective amplification; trailing edge noise directivity; flow-speed dependence. This agreement implies that the trailing edge noise is dominant over the whole frequency range of the noise from the 660 kW wind turbine using the pitch control for power regulation.

  • PDF

Probabilistic Assessment of Voltage Stability Margin in Presence of Wind Speed Correlation

  • Li, Hongxin;Cai, DeFu;Li, Yinhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.719-728
    • /
    • 2013
  • Probabilistic assessment of voltage stability margin (VSM) with existence of correlated wind speeds is investigated. Nataf transformation is adopted to establish wind speed correlation (WSC) model. Based on the saddle-node bifurcation transversality condition equations and Monte Carlo simulation technique, probability distribution of VSM is determined. With correlation coefficients range low to high value, the effect of WSC on VSM is studied. In addition, two risk indexes are proposed and the possible threat caused by WSC is evaluated from the viewpoint of risk analysis. Experimental results show that the presence of correlated wind speeds is harmful to safe and stable operation of a power system as far as voltage stability is concerned. The achievement of this paper gives a detailed elaboration about the influence of WSC on voltage stability and provides a potentially effective analytical tool for modern power system with large-scale wind power sources integration.

Vibration Monitoring and Power Performance Evaluation of a Small Stand-alone Wind Turbine Generator (소형 독립형 풍력발전기의 진동 모니터링 및 출력 성능 평가)

  • Yoo, N.S.;Kim, Yoon-Ho;Kim, Seock-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.114-120
    • /
    • 2007
  • Vibration performance of a 6 kW stand-alone wind turbine(W/T) generator is investigated under the wind environment of Daegwanryung mountain area. In the W/T, wind condition, power performance and structural stability are correlated each other An integrated monitoring system which consists of accelerometers, anemometers, power meters and auxiliary sensors for atmospheric data are constructed to measure the required data simultaneously. Based upon the data acquired over a long period of time, vibration performance of the W/T structure is estimated with annual wind data and generating power performance. Within the operating speed range, possibility of severe nitration is diagnosed. Vibration sources are identified and countermeasures are proposed. The goal of the study is to offer the basic information on W/T vibration performance at the design stage of a small stand alone W/T structure.

Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

  • Park, Keunchan;Lee, Jeongwoo;Yi, Yu;Lee, Jaejin;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena's sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock's parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

The Electrical Characteristics of The Modules According to The Environment of The Floating Photovoltaic System (수상태양광 발전 시스템의 환경에 따른 모듈의 전기적 특성)

  • Hwang, Soo Hyun;Lee, Dong Yeong;Kwon, O geuk;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.283-289
    • /
    • 2018
  • In our study, we collected data from a 100 kW floating photovoltaic (PV) system installed in Gyeongnam Hapcheon Dam and observed correlations between the power generation of the floating PV system and the irradiance, water temperature, humidity, ambient temperature, wind speed, and module temperature. Firstly, there was little correlation between the water temperature and power generation. Secondly, the ambient temperature, wind speed, and humidity all showed greater correlations with power generation. Finally, the power generation was very highly correlated with the irradiance and module temperature. In conclusion, the power generation of the floating PV system is related individually to environmental factors.

Relationship between Pollen Concentration and Meteorological Condition in an Urban Area (도시지역 공중화분 농도와 기상조건과의 관계)

  • Oh, In-Bo;Kim, Yangho;Choi, Kee-Ryong;Lee, Ji Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.780-788
    • /
    • 2013
  • This study attempted to determine important meteorological parameters related to airborne pollen concentrations in urban areas. Hourly pollen measurement data were prepared from a regular sampling with a volumetric Burkard spore trap at a site in the Ulsan city, during the spring season (March~May) of 2011. Results showed that the daily mean and maximum concentrations for total pollen counts during the spring season were statistically significantly correlated with both air temperature and wind speed; daily mean pollen concentration was the most highly related to daily maximum temperature (r=0.567, p<0.001). It was also identified that pollen concentration has a stronger relationship with wind speed at the rural site than at the urban one, which confirms that strong wind conditions over the pollen sources area can be favorable for pollen dispersal, resulting in increases in airborne pollen concentrations downwind. From the results of an oak-pollen episode analysis, it was found that there was a significant relationship between hourly variation of oak pollen concentrations and dynamic meteorological factors, such as wind and mixing height (representing the boundary layer depth); especially, a strong southwestern wind and elevated mixing height was associated with high nocturnal concentrations of oak pollen. This study suggests that temperature, wind, and mixing height can be important considerations in explaining the pollen concentration variations. Additional examination of complex interactions of multiple meteorological parameters affecting pollen behavior should be carried out in order to better understand and predict the temporal and spatial pollen distribution in urban areas.

A Congestion Management Approach Using Probabilistic Power Flow Considering Direct Electricity Purchase

  • Wang, Xu;Jiang, Chuan-Wen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.820-831
    • /
    • 2015
  • In a deregulated electricity market, congestion of the transmission lines is a major problem the independent system operator (ISO) would face. Rescheduling of generators is one of the most practiced techniques to alleviate the congestion. However, not all generators in the system operate deterministically and independently, especially wind power generators (WTGs). Therefore, a novel optimal rescheduling model for congestion management that accounts for the uncertain and correlated power sources and loads is proposed. A probabilistic power flow (PPF) model based on 2m+1 point estimate method (PEM) is used to simulate the performance of uncertain and correlated input random variables. In addition, the impact of direct electricity purchase contracts on the congestion management has also been studied. This paper uses artificial bee colony (ABC) algorithm to solve the complex optimization problem. The proposed algorithm is tested on modified IEEE 30-bus system and IEEE 57-bus system to demonstrate the impacts of the uncertainties and correlations of the input random variables and the direct electricity purchase contracts on the congestion management. Both pool and nodal pricing model are also discussed.