• Title/Summary/Keyword: Corrosion Level

Search Result 344, Processing Time 0.027 seconds

An Experimental Study on Evaluation of Structural Performance on Corroded Reinforced Concrete Columns (철근이 부식된 철근콘크리트 기둥의 구조성능 평가에 대한 실험적 연구)

  • Won, Jong-Ho;Han, Nam-Hee;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.711-717
    • /
    • 2000
  • This paper presents an experimental study on evaluation of structural performance on corroded reinforced concrete columns under only axial load, combined axial load and lateral load. This test was carried on the twenty-six reinforced concrete columns with $150\times150\times800$mm size subjected to combined axial load and lateral load. Effects of key variables such as the corrosion level, the number of hoop, the corrosion of hoop are studied in this program. The results of this study show that the capacity of column axial force was decreased as corrosion level was increased, especially, rapid development was shown after 10% corrosion level and the maximum moment capacity of column was shown at corrosion level 1.2%, while rapid decrease was shown after 4.3% corrosion level. Also we found that influence of corrosion was decreased to number of tie bar was increased.

  • PDF

The influence of the hollow and solid shaft cross sectionof SM 30 C steel on corrosion fatigue strength (SM 30 C강의 중공 중실축 단면변화 부식피로강도에 미치는 영향)

  • 신규동;장백선;김웅집
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.28-38
    • /
    • 1997
  • The corrosion fatigue test was conducted in air to investigate the corrosion fatigue strength of SM 30 C steel by which was corroded in the under sea and surface in the conditions of 3.0% NaCl salt solution. The fatigue tests were carried out on a rotary bending testing machine of cantilever type. The corrosion effect of the sea surface conditionwas served more than that of the under sea condition which was due ti the periodic contact of air thus accelerate the corrosion. The difference of the fatgue strength between sea surface and under sea conditions decreased with increase of stree level and corroded period. Inthe case of the solid shaft and thickness 2mm of hollow shaft, the difference of corrosion fatigue strength decreased as stress level and corrosion periodic increasing. Onthe contrary in the case of thickness 1mm of hollow sgaft, the difference of it increased as stress level, corrosionn periooodic increasing and also the condition of corrosion chaanged. The main factors affecting the degradation of fatigue strength due to corrosion were the reduction of sectional area and the increase of surface roughness. The interference phenomenon increase with stress level got higher.

  • PDF

Electrochemical Analysis of the Microbiologically Influenced Corrosion of Steels by Sulfate-Reducing Bacteria

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Ki-Joon;Kim, Seong-Jong;Shin, Sung-Kyu;Koh, Sung-Cheol
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.187-193
    • /
    • 2004
  • We have investigated the differences between the general corrosion and microbiologically influenced corrosion (MIC) of steels in terms of electrochemical behavior and surface phenomena. Corrosion potential of steels in the absence of SRB (sulfate-reducing bacteria) shifted to a low level and was maintained throughout the experimental period (40 days). The potential in the presence of SRB, however, shifted to a noble level after 20 days' incubation, indicating the growth of SRB biofilms on the test metal specimens and a formation of corrosion products. In addition, the color of medium inoculated with SRB changed from gray to black. The color change appeared to be caused by the formation of pyrites (FeS) as a corrosion product while no significant color change was observed in the medium without SRB inoculation. Moreover, corrosion rates of various steels tested for MIC were higher than those in the absence of SRB. This is probably because SRB were associated with the increasing corrosion rates through increasing cathodic reactions which caused reduction of sulfate to sulfide as well as formation of an oxygen concentration cell. The pitting corrosions were also observed in the SRB-inoculated medium.

Reinforced Concrete Slabs with Corroded Bars (철근이 부식된 콘크리트 슬래브의 구조성능 평가에 대한 실험적 연구)

  • Jung, Eun-Chul;Lee, Kyoung-Un;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.718-723
    • /
    • 2000
  • Corrosion is a world wide problem effecting a large number of structure. Cost of repair and rehabilitation on reinforcement structure damaged by steel corrosion is expensive. But structural capacity on low level corrosion is increased. So this experimental study was performed to know structural performance on reinforced concrete slabs with low level corroded bars. As in the case of test samples, bond stress and structural capacity increases up to 2% corrosion level.

  • PDF

Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

  • Song, Ha-Won;Ann, Ki-Yong;Kim, Tae-Sang
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (i.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/$m^3$ at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC itself is beneficial in resisting to corrosion initiation, but use of pozzolanic materials as binders shows more resistance to chloride transport into concrete, thus delay the onset of corrosion.

Bending characteristics of corroded reinforced concrete beam under repeated loading

  • Fang, Congqi;Yang, Shuai;Zhang, Zhang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.773-790
    • /
    • 2013
  • Bending behaviors of corroded reinforced concrete (RC) beams under repeated loading were investigated experimentally. A total of twenty test specimens, including four non-corrosion and sixteen corrosion reinforced concrete beams, were prepared and tested. A numerical model for flexural and cracking behaviors of the beam under repeated loading was also developed. Effects of steel corrosion on reinforced concrete beams regarding cracking, mid-span deflection, stiffness and bearing capacity of corroded beams were studied. The impact of corrosion on bond strength as the key factor was investigated to develop the computational model of flexural capacity. It was shown from the experimental results that the bond strength between reinforcement and concrete had increased for specimen of low corrosion levels, while this effect was changed when the corrosion level was higher. It was indicated that the bearing capacity of corrosion beam increased even at a corrosion level of about 5%.

Variation of Corrosion Properties on the Steel Surface by Environmental Changes in Shihwa Lake (시화호 환경 변화에 따른 강재 표면의 부식특성 변화)

  • Park, Jun-Mu;Lee, Seung-Hyo;Woo, Sang-Kyun;Chu, In-Yeop;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.316-324
    • /
    • 2018
  • Harsh seawater environment is subdivided into marine atmosphere, splash zone, tidal zone, submerged zone and bottom of sea depending on the exposed part. Since corrosion rate depends on the conditions of the exposed parts, proper protection and maintenance for each parts are essential for long-term use of steel structures in seawater environment. For steel structures which were installed in Shiwha Lake, a special maintenance system is required to guarantee its long-term durability and safety. As the tidal power plant has recently been operated, the salinity has risen due to the rapid influx of seawater upstream into Sihwa Lake and the corrosion tendency of the structure is variable according to the water level fluctuation. In this study, corrosion properties of steel structures under water level fluctuation was evaluated by corrosion rate measurement, visual inspection and natural potential measurement and their durability and life management were discussed in view of the effect of variation in of seawater level fluctuations in Shihwa Lake.

Prediction Method of Rebar Corrosion Level Using Infrared Thermographic Data according to Increasing Rate of Early Temperature (적외선 열화상 데이터를 이용한 초기온도 상승률에 따른 철근의 부식률 예측 기법)

  • Yun, Ju-Young;Paik, In-Kwan;Cho, Seung-Ho;Roh, Young-Sook;Chung, Lan
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.425-428
    • /
    • 2007
  • In order to measure corrosion level of reinforcement rebar which is inside reinforced concrete structure, infrared thermographic technique was employed. Experimental test parameters were ambient temperatures, various levels of corrosion states. After analysis of temperature distributions of concrete surface, the amount of heat flux from the concrete surface is directly proportional to the corrosion level which is inside of concrete.

  • PDF

Non-Destructive Corrosion Measurement Technique of Reinforcing Bars Using Infrared Thermography according to Atmosphere Temperature (대기온도에 따른 적외선 열화상 처리기법을 이용한 철근의 부식률 측정 기법)

  • Yun, Ju-Young;Paik, In-Kwan;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.233-236
    • /
    • 2006
  • This study presents a technique to quantitatively measure the corrosion level of a reinforcing bar using the infrared thermography system. The temperature-distribution of the concrete surface is monitored and the temperature change of the reinforcing bar is analysed in terms of corrosion level and concrete cover depth. The experimental results indicate that temperature increase of the reinforcing bar is significant when the corrosion level is high, which implies that the quantity of heat is strongly dependent on corrosion level. Also, as the concrete cover depth of the specimen and the atmosphere temperature increase, the temperature variation becomes small.

  • PDF

Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature

  • Hur, S.Y.;Jeon, J.M.;Kim, K.T.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • Chloride ion is one of the most important corrosive agents in atmospheric corrosion, especially in marine environments. It has high adsorption rate and increases the conductivity of electrolytes. Since chloride ions affect the protective properties and the surface composition of the corrosion product, they increase the corrosion rate. A low level of chloride ions leads to uniform corrosion, whereas a high level of chloride ions may induce localized corrosion. However, higher solution temperatures tend to increase the corrosion rate by enhancing the migration of oxygen in the solution. This work focused on the effect of NaCl concentration and temperature on galvanic corrosion between A516Gr.55 carbon steel and AA7075T6 aluminum alloys. When AA7075T6 aluminum alloy was galvanically coupled to A516Gr.55 carbon steel, AA7075T6 was severely corroded regardless of NaCl concentration and solution temperature, unlike the corrosion properties of single specimen. The combined effect of surface treatment involving carbon steel and aluminum alloy on corrosion behavior was also discussed.