• Title/Summary/Keyword: Corrosion pit

Search Result 98, Processing Time 0.027 seconds

Influence of Salt Solution Concentration on Corrosion Pit Growth Characteristic of Dual Phase Steel (복합조직강의 부식피트 성장특성에 미치는 식염수농도의 영향)

  • Oh, Sae-Wook;Kang, Ho-Min;Kim, Tae-Man;Do, Yeong-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1988
  • In order to investigate the corrosion pit occurrence and growth characteristic of M.E.F.(martensite encapsulated islands of ferrite) dual phase steel was made with a suitable heat treatment of raw material(SS41), a corrosion fatigue test was performed under rotary bending in the salt solution having a concentration from 0.01 wt percent to 3.5 wt percent. The fatigue strength of dual phase steel was remarkably decreased with an increase in concentration of salt solution; approximately from 63% to 80% in case of dual phase steel and from 40% to 71% in case of raw material. Corrosion pit occurred in the martensite phase and fatigue cracks from corrosion pits were selectively propagated in martensite phases. In the observation of corrosion pits at the origin of fatigue cracks, it had been found that corrosion pits were grown into hemispherical pits and a/c(the surface diameter, 2c and the depth, a of corrosion pit)was about 1.0-1.5regardless of the variation of salt solution concentration. The difference of corrosion pit depth growth rate was increased with an increase in concentration of salt solution according to an increase in stress level.

  • PDF

Application of Multiple Linear Regression to Predict Mechanical Properties of 316L Stainless Steel with Unspecified Pit Corrosion (불특정 공식손상을 가진 316L 스테인리스강의 기계적 물성치 예측을 위한 다중선형회귀 적용)

  • Kwang-Hu Jung;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2023
  • The aim of this study was to propose a multiple linear regression (MLR) equation to predict ultimate tensile strength (UTS) of 316L stainless steel with unspecified pit corrosion. Tensile specimens with pit corrosion were prepared using a potentiostatic acceleration test method. Pit corrosion was characterized by measuring ten factors using a confocal laser microscope. Data were collected from 22 tensile tests. At 85% confidence level, total pit volume, maximum pit depth, mean ratio of surface area, and mean area were significant factors showing linear relationships with UTS. The MLR equation using these three significant factors at a 85% confidence level showed considerable prediction performance for UTS. Determination coefficient (R2) was 0.903 with training and test data sets. The yield strength ratio of 316L stainless steel was found to be around 0.85. All specimens with a pit corrosion presented a yield ratio of approximately 0.85 with R2 of 0.998. Therefore, pit corrosion did not affect the yield ratio.

A Study on the Pitting Corrosion Resistance of Laser Surface Treated Nickel-Base Alloy (레이저 표면처리된 Nickel-Base 합금의 공식 저항성 연구)

  • Song, Myeong-Ho;Kim, Yong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.217-225
    • /
    • 1999
  • The effect on the pitting corrosion resistance of laser welding and surface treatment developed as a repair method of stream generator tubing material that was a major component of primary system at nuclear power plant was observed. Some heat-treated Alloy 600 tubing materials used at domestic nuclear power plants were laser-surface observed. Some heat-treated Alloy 600 tubing materials used at domestic nuclear power plants were laser-surface melted and the microstructural characteristics were examined. The pitting corrosion resistance was examined through Ep(pitting potential) and degree of pit generation by means of the electrochemical tests and the immersion tests respectively. The pit formation characteristics were investigated through microstructural changes and the pit initiation site and pit morphology. The test results showed that the pitting corrosion resistances was increased in the order of the followings; sensitized Alloy 600, solution annealed alloy600, and laser surface melted Alloy 600. Pits were initiated preferably at Ti-containing inclusions and their surroundings in all tested specimens and it is believed that higher pitting resistance of laser-surface treated Alloy 600 was caused by fine, homogeneous distribution of non-soluble inclusions, the disappearance of grain boundary, and the formation of dense, stable oxide film. The major element of corrosion products filled in the pit was Cr. On the other hand, Fe was enriched in the deposit formed on the pit.

  • PDF

Assessment of External and Internal Corrosion Growth Rate for Metallic Water Pipes (상수도 금속관의 외면과 내면 부식속도 평가에 관한 연구)

  • Bae, Chulho;Kim, Juhwan;Kim, Jeonghyun;Hong, Seongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.17-25
    • /
    • 2008
  • In this study, external and internal pit growth rate model and external non-linear regression corrosion model were proposed by measuring pit depths and evaluating various soil factors known to contribute to the corrosion for metallic water pipes. Average pit depths of external and internal for metallic water pipes were measured 1.38 mm and 2.13 mm, and internal pit growth rate also fasted twice than external pit growth rate. This means the corrosion potential of water quality was higher than soil. The corelation between external corrosion rate and each soil corrosion factor was low. However, proposed external non-linear regression corrosion model considering all soil corrosion factors showed a little higher correlation ($R^2=0.46$) than conventional model.

  • PDF

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao;Qi Guo;Zizhong Zhao;Xian Wu;Ying Xing
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.385-401
    • /
    • 2023
  • Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.

Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

  • Wang, Haitao;Han, En-Hou
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.64-68
    • /
    • 2017
  • The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

Effects of Laser Surface Melting on the Pitting Resistance of Alloy 690 (Alloy 690의 공식저항성에 미치는 레이저 표면 용융의 영향)

  • Kim, Young-Kyu;Jhee, Tae-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.145-150
    • /
    • 2001
  • The effect of laser welding and surface treatment, developed as a method of repairing steam generator tubes, on the pitting corrosion resistance of alloy 690 was examined. The surfaces of some heat-treated Alloy 690 materials were melt-treated using the Nd-YAG laser beam, and then examined to characterize the microstructures. The resistance to pitting corrosion was evaluated by measuring of Ep(pitting potential) through the electrochemical tests and also by measuring the degree of pit generation through the immersion tests. The pit formation characteristics were investigated by observing microstructural changes and pit morphologies. The results show that the resistance to pitting corrosion increases in the order of the following list; solution annealed Alloy 690, thermally treated Alloy 690, and laser surface melt-treated Alloy 690. The melted region was found to have a cellular structure and fine precipitates. It was confirmed that the resistance of Alloy 690 to pit initiation and also to pit propagation was higher when it was laser treated than treated otherwise.

  • PDF

Elucidation of the Noise in Corrosion of Aluminum Foil

  • Chiba, Atsushi;Hattori, Atsushi;Wu, Weng-Chang
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.102-106
    • /
    • 2004
  • Al foil used was 99.9 and 99.99 %. Test solution used was NaCl solution. The noise was determined using controlled potential electrolysis at -200 and -700 mV vs. NHE. The current fluctuation was caused by breakdown and repaired process of aluminum oxide film. The current fluctuation value of noise was proportion to degree of growth. The number of noise was proportion to the number of pit. The examining of current flutulation value and number of noise could be evaluated corrosion. A 99.99 % Al foil was the mostly crystal of {100} plane, and showed three-dimensional, as azimuth pit with along the direction of this place piled up. A 99.9 % Al foil was polycrystal, and in order of (311) >(222) >(200) >(111) plane. The azimuth pit did not occurred as the dissolution was occurred from each plane.

Life Prediction and Fatigue Strength Evaluation for Surface Corrosion Materials (인공부식재의 피로강도평가와 통계학적 수명예측에 관한 연구)

  • 권재도;진영준;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1503-1512
    • /
    • 1992
  • The strength evaluation and life prediction on the corrosion part of structure is one of the most important subjects, as a viewpoint of reducing economic loss by regular inspection, maintenance, repair and replace. For this purpose, it has been difficult to obtain the available data on growth of pit depth or growth rate of each pit which depends on time. In this paper, the life prediction and strength evaluation method was suggested for the structure with irregular stress concentration part by surface corrosion. The statistical distribution pattern of corrosion depth and the degree of fatigue strength decline were confirmed according to corrosion period by artificial corrosion of SS41 steel. The life prediction and the fatigue strength evaluation of materials with consideration of the corrosion period on the extreme value statistic analysis by the data of maximum depth of corrosion and on random variable was studied.

Characteristics of Pit Corrosion and Estimation Models of Corrosion Depth in Buried Water Pipes (상수도관의 부식특성과 부식깊이 추정 모델)

  • Kim, Jea-Hag;Ryu, Tae-Sang;Kim, Ju-Hawn;Ha, Sung-ryung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.689-699
    • /
    • 2007
  • The accurate estimation of water pipe deterioration is indispensable to prevent pipe breakage and manage in advance. In this study, corrosion of water pipe is adopted, which is relatively underestimated although it takes most part of deteriorating pipeline. Predicting corrosion rate and corrosion depth of a pipe can make an increase the life span of the pipeline, which is laid under the ground according to characteristics of soil and water corrosion. For the purpose, mathematical models that can presume nominal depth through estimation of pit corrosion and corrosion rate is introduced. As comparison of results with conventional methods in other foreign countries, it is evaluated that the external corrosion depth is estimated less than the models, proposed by other researchers and the internal corrosion rate was processed faster than the external corrosion rate.