• Title/Summary/Keyword: Corrugated panel

Search Result 36, Processing Time 0.022 seconds

Improvement Strategy of the Sound Insulation Performance of a Corrugated Steel Panel (주름강판의 차음성능 향상 방안)

  • Lee, Hyun-Woo;Kim, Seock-Hyun;Kim, Jeong-Tae;Kim, Jae-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1097-1102
    • /
    • 2009
  • In a railway vehicle, corrugated steel panel is widely used for the floor panel because of its high bending stiffness and light weight. However, this panel shows lower sound insulation performance than that of the plate with the same weight. Especially, in a particular frequency band, transmission loss (TL) rapidly decreases and it results in the deterioration of TL of the overall floor panel. This study identifies that the remarkable drop in TL is caused from the local resonance of the periodic corrugated structure. This study shows that the frequency band of the TL drop can be controlled by the proper design of the corrugated structure. In addition, improvement effect of TL by attaching foam and glass wool is estimated by experiment. The purpose of the study is to provide the practical information for the improvement of the sound insulation performance of the corrugated steel.

  • PDF

Sound Insulation Performance of Corrugated Panels for Rail Way Vehicles (철도차량용 주름판재의 차음성능)

  • Kim, Seock-Hyun;Park, Jung-Mo
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.9-14
    • /
    • 2000
  • Sound insulation performance is investigated on the corrugated panel used for a rail way vehicle. Random incidence sound transmission loss is calculated by using the equivalent orthotropic plate model. Analysis results on several kinds of corrugated panels are in good agreement with the measured data. The analysis method is applied to predict the sound transmission loss of the corrugated panel used for Korean high speed train.

  • PDF

Improvement Effect of the Sound Insulation Performance of the Corrugated Steel Panel by Sound Absorbing and Damping Materials (흡음 및 댐핑재 의한 주름강판의 차음성능 개선효과)

  • Kim, Seock-Hyun;Seo, Tae-Gun;Kim, Jung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.476-480
    • /
    • 2010
  • In the corrugated steel panels used for railway vehicles, sound insulation performance is significantly deteriorated by local resonance effect. In this study, as a countermeasure, polyurethane foam is filled in the corrugated steel panel and glass wool layer is inserted in the layered floor panel, and then improvement effect of the sound insulation performance is experimentally estimated. Based on ASTM E2249-02, intensity transmission loss is measured and estimated on the corrugated panel and floor structure. The aim of the study is to identify how the foam filling and inserting glass wool layer improve the sound insulation performance of the train body structure in aspect of the weight increment.

Sound Insulation Design of the Corrugated Steel Panel Considering Local Resonance (국부 공진을 고려한 주름강판의 차음 설계)

  • Kim, Seock-Hyun;Lee, Hyun-Woo;Kim, Jung-Tae;Kim, Jae-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.672-676
    • /
    • 2010
  • In a railway vehicle, corrugated steel panel is widely used for the floor structure because of its high bending stiffness and light weight. However, this panel shows lower sound insulation performance than that of the flat plate with the same weight. Especially, in a particular frequency region, transmission loss(TL) rapidly decreases and it results in the deterioration of sound insulation performance of the overall floor structure. This study identifies that the severe decrease in TL is caused from the local resonance of the periodic corrugated structure. TL decrease by local resonance is investigated by experiment and finite element analysis. Finally, design modification of the corrugation is proposed to improve TL and the effect is verified by experiment.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Equivalent Plate Model and Acoustic Power Radiation of the Corrugated Panel Structures for High Speed Train (고속전철용 주름판넬구조의 등가평판모델 및 방사소음)

  • 장준호;이상윤;홍성철;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.26-35
    • /
    • 1999
  • The acoustic power reduction method can be used to design a quiet structure. To calculate the acoustic power radiated from a vibrating structure, the dynamic responses have to be determined. It is not easy to analyse the structure composed of the corrugated panels because of the structural complexity and the long analysing time. To make up for these defects, the equivalent orthotropic panel is presented. Also the acoustic power prediction method of the vibrating structures is proposed. As examples, the equivalent material properties of the corrugated plates are obtained and the acoustic powers of the floor structure are calculated at several frequency regions for the Korean High Speed Train.

  • PDF

Analysis Sound Insulation Performance of a Corrugated Steel Panel Through Modal Density (주름 강판의 모드 밀도에 따른 차음 성능 분석)

  • Kim, Seockhyun;Byeon, Jun Ho;Lee, Joong Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1061-1066
    • /
    • 2016
  • Corrugation of a corrugated panel dramatically increases the bending stiffness per weight. However, corrugated panels show lower sound insulation performance than that of the flat plate having the same weight. Especially, in a particular frequency region, the sound transmission loss significantly decreases. Main reason of the problem is known as the local resonance. A number of local resonance modes occur above a certain frequency band and modal density rapidly increases. In this study, we investigate the relation of the sound transmission loss and the modal density. Finally, we propose a design methodology in terms of the modal density to improve the sound insulation performance of the corrugated panels without weight increase.

Analysis of corrugated board panels under compression load

  • Biancolini, M.E.;Brutti, C.;Porziani, S.
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • This paper is focused on the buckling and post buckling behaviour of rectangular corrugated board panels simply supported and subjected to compression load. The aim of the work is to understand the failure mechanism of investigated structure in order to quantify the effect of design parameters on the strength of a panel of given geometry. Two numerical models were developed adopting the finite element method. In the first one the corrugated board is represented by means of shell elements adopting an equivalent material, in the second the local structure is described in full detail modelling both straight and corrugated layers by means of shell elements and representing the connection between layers by special interface elements. The model correctness was checked by the comparison between out of plane central displacement predicted by the models and the experimental values found in literature. For the same case the effect of panel planarity error was evaluated. Finally a parametric analysis to investigate the effect of design parameters was carried out.

Shear Capacity of Corrugated rib Shear Connector (파형전단연결재의 전단저항 성능)

  • Ahn, Jin-Hee;Choi, Kyu-Tae;Kim, Sung-Hyun;Kim, Sang-Hyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.375-381
    • /
    • 2008
  • This paper deals with the shear capacity of corrugated rib as the shear connector in composite structures. Corrugated rib is modified as perfobond rib shear connector type to evaluate the shear capacity. A total 12 push-out specimens with stud, perfobond rib, and corrugated rib connector were fabricated. Then, the influences of hole-crossing bars, concrete dowel, depth of corrugated panel and height of rib on the shear capacity were evaluated experimentally. As the results of these tests, the failure mechanisms of corrugated rib and perfobond rib specimens were associated with the bearing failure of the concrete slabs, but the failure of weld zone did not occur. The shear capacity of corrugated rib specimens improved as high to 96% compared to the perfobond rib shear connectors. Also, the hole-crossing bars were effective on the improvement of concrete dowel action, and consequently, shear capacity increased by 48%. It was also proven that the increment of the depth of corrugated panel and the height of rib increased the concrete bearing resistance, therefore increasing the shear capacity.

An Estimation of the Sound Insulation Performance of the Multi-layered Panel for a Tilting Train (틸팅 차량용 적층재의 차음성능 평가)

  • Seo, Tae-Gun;Lim, Bong-Gi;Kim, Seock-Hyun;Kim, Jae-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.597-600
    • /
    • 2009
  • Sound transmission loss (TL) is experimently investigated on the multi-layered panel used for the floor of a tilting train. Measurement of the intensity transmission loss is performed according to ASTM E 2249-02. The floor structure consists of corrugated steel panel, glass wool, plywood and cover. On the corrugated steel panel, TL drop by local resonance is considered and the TL improvement effect by damping treatment is estimated. Total sound transmission loss of the entire floor structure is obtained and the contribution of each layer is examined.

  • PDF